An Algebraic Multigrid Method for Eigenvalue Problems and Its Numerical Tests

被引:3
作者
Zhang, Ning [1 ]
Han, Xiaole [2 ]
He, Yunhui [3 ]
Xie, Hehu [4 ,5 ]
You, Chun'guang [6 ]
机构
[1] Chinese Acad Sci, Inst Elect Engn, 6 Beiertiao, Beijing 100190, Peoples R China
[2] Inst Appl Phys & Computat Math, Beijing 100094, Peoples R China
[3] Mem Univ Newfoundland, Dept Math & Stat, St John, NF A1C 5S7, Canada
[4] Chinese Acad Sci, Acad Math & Syst Sci, ICMSEC, LSEC, Beijing 100190, Peoples R China
[5] Univ Chinese Acad Sci, Sch Math Sci, Beijing 100049, Peoples R China
[6] CAEP Software Ctr High Performance Numer Simulat, Beijing 100088, Peoples R China
基金
北京市自然科学基金;
关键词
Algebraic multigrid; multilevel correction; eigenvalue problem; AGGREGATION; CONVERGENCE; SCHEME;
D O I
10.4208/eajam.210918.090519
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In order to solve eigenvalue problems, an algebraic multigrid method based on a multilevel correction scheme and the algebraic multigrid method for linear equations is developed. The algebraic multigrid method setup procedure is used for construction of an hierarchy and intergrid transfer operators. In this approach, large scale eigenvalue problems are solved by algebraic multigrid smoothing steps in the hierarchy and by low-dimensional eigenvalue problems. The efficacy and flexibility of the method is demonstrated by a number of test examples and the global convergence, which does not depend on the number of eigenvalues wanted, is obtained.
引用
收藏
页码:1 / 19
页数:19
相关论文
共 37 条
  • [1] Algebraic multigrid for discontinuous Galerkin discretizations of heterogeneous elliptic problems
    Bastian, Peter
    Blatt, Markus
    Scheichl, Robert
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2012, 19 (02) : 367 - 388
  • [2] MULTIGRID METHODS FOR DIFFERENTIAL EIGENPROBLEMS
    BRANDT, A
    MCCORMICK, S
    RUGE, J
    [J]. SIAM JOURNAL ON SCIENTIFIC AND STATISTICAL COMPUTING, 1983, 4 (02): : 244 - 260
  • [3] Brandt A., 1982, ALGEBRAIC MULTIGRID
  • [4] An energy-based AMG coarsening strategy
    Brannick, J
    Brezina, M
    MacLachlan, S
    Manteuffel, T
    McCormick, S
    Ruge, J
    [J]. NUMERICAL LINEAR ALGEBRA WITH APPLICATIONS, 2006, 13 (2-3) : 133 - 148
  • [5] COMPATIBLE RELAXATION AND COARSENING IN ALGEBRAIC MULTIGRID
    Brannick, James J.
    Falgout, Robert D.
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (03) : 1393 - 1416
  • [6] Adaptive algebraic multigrid
    Brezina, M
    Falgout, R
    Maclachlan, S
    Manteuffel, T
    Mccormick, S
    Ruge, J
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2006, 27 (04) : 1261 - 1286
  • [7] Algebraic multigrid based on element interpolation (AMGE)
    Brezina, M
    Cleary, AJ
    Falgout, RD
    Henson, VE
    Jones, JE
    Manteuffel, TA
    McCormick, SF
    Ruge, JW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 22 (05) : 1570 - 1592
  • [8] Multigrid methods for nearly singular linear equations and eigenvalue problems
    Cai, ZQ
    Mandel, J
    McCormick, S
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 1997, 34 (01) : 178 - 200
  • [9] Ciarlet P. G., 1978, STUD MATH APPL, V4
  • [10] Robustness and scalability of algebraic multigrid
    Cleary, AJ
    Falgout, RD
    Henson, VE
    Jones, JE
    Manteuffel, TA
    McCormick, SF
    Miranda, GN
    Ruge, JW
    [J]. SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2000, 21 (05) : 1886 - 1908