Detonation onset following shock wave focusing

被引:87
作者
Smirnov, N. N. [1 ,2 ,4 ]
Penyazkov, O. G. [3 ,4 ]
Sevrouk, K. L. [3 ]
Nikitin, V. F. [1 ,4 ]
Stamov, L. I. [1 ,2 ,4 ]
Tyurenkova, V. V. [2 ,4 ]
机构
[1] Moscow Lomonosov State Univ, Moscow 119992, Russia
[2] Russian Acad Sci, Sci Res Inst Syst Anal, Moscow 117218, Russia
[3] Natl Acad Sci Belarus, Lykovs Heat & Mass Transfer Inst, P Brovki 15, Minsk, BELARUS
[4] LLC Ctr Numer Modeling, Moscow 124482, Russia
基金
俄罗斯基础研究基金会;
关键词
Combustion; Detonation; Shock waves; Experiment; Kinetics; Simulation; Parallel computing; HYDROGEN; SIMULATION; DEFLAGRATION; MIXTURE; SYSTEMS;
D O I
10.1016/j.actaastro.2016.09.014
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
The aim of the present paper is to study detonation initiation due to focusing of a shock wave reflected inside a cone. Both numerical and experimental investigations were conducted. Comparison of results made it possible to validate the developed 3-d transient mathematical model of chemically reacting gas mixture flows incorporating hydrogen - air mixtures. The results of theoretical and numerical experiments made it possible improving kinetic schemes and turbulence models. Several different flow scenarios were detected in reflection of shock waves all being dependent on incident shock wave intensity: reflecting of shock wave with lagging behind combustion zone, formation of detonation wave in reflection and focusing, and intermediate transient regimes.
引用
收藏
页码:114 / 130
页数:17
相关论文
共 50 条
  • [21] Effect of methane addition to hydrogen-air mixtures on the transition to detonation due to shock wave focusing in a 90° wedge
    Allah, S. Khair
    Rudy, W.
    Teodorczyk, A.
    SHOCK WAVES, 2025,
  • [22] Detonation initiation by shock focusing at elevated pressure conditions in a pulse detonation combustor
    Habicht, Fabian E.
    Yuecel, Fatma C.
    Gray, Joshua A. T.
    Paschereit, Christian O.
    INTERNATIONAL JOURNAL OF SPRAY AND COMBUSTION DYNAMICS, 2020, 12
  • [23] Fireball and shock wave dynamics in the detonation of aluminized novel munitions
    J. M. Gordon
    K. C. Gross
    G. P. Perram
    Combustion, Explosion, and Shock Waves, 2013, 49 : 450 - 462
  • [24] Combustible Gas Cylinder Detonation upon Incident Shock Focusing
    P. Yu. Georgievskiy
    V. A. Levin
    O. G. Sutyrin
    Technical Physics Letters, 2019, 45 : 1209 - 1211
  • [25] Combustible Gas Cylinder Detonation upon Incident Shock Focusing
    Georgievskiy, P. Yu.
    Levin, V. A.
    Sutyrin, O. G.
    TECHNICAL PHYSICS LETTERS, 2019, 45 (12) : 1209 - 1211
  • [26] Investigation of counter-rotating shock wave and wave direction control of hollow rotating detonation engine with Laval nozzle
    Rong, Guangyao
    Cheng, Miao
    Sheng, Zhaohua
    Liu, Xiangyang
    Zhang, Yunzhen
    Wang, Jianping
    PHYSICS OF FLUIDS, 2022, 34 (05)
  • [27] Parametric study of hydrogen concentration on detonation initiation by shock focusing
    Yang, Honglei
    Chen, Xiang
    Zhao, Ningbo
    Zheng, Hongtao
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (46) : 20265 - 20275
  • [28] Normal Detonation Shock Wave in Turbulent Flow
    Avramenko, Andriy
    Kovetskaya, Margarita
    Kovetska, Yulia
    Tyrinov, Andrii
    FLOW TURBULENCE AND COMBUSTION, 2024, 113 (02) : 419 - 435
  • [29] Flame behavior, shock wave, and instantaneous thermal field generated by unconfined vapor-liquid propylene oxide/air cloud detonation
    Ye, Cong-liang
    Du, Qing -lei
    Liu, Li -juan
    Zhang, Qi
    DEFENCE TECHNOLOGY, 2023, 25 : 18 - 32
  • [30] Numerical Study of the Effect of Gas Nonideality on Shock Wave Focusing in a Channel With a Hemispherical End
    Gidaspov, V. Yu.
    Zuong, M. D.
    Severina, N. S.
    HIGH TEMPERATURE, 2022, 60 (SUPPL 2) : S223 - S229