Effect of Charging/Discharging Rate on the Thermal Runaway Characteristics of Lithium-Ion Batteries in Low Pressure

被引:19
|
作者
Xie, Song [1 ]
Ren, Lixiang [1 ]
Gong, Yize [1 ]
Li, Minghao [1 ]
Chen, Xiantao [1 ]
机构
[1] Civil Aviat Flight Univ China, Coll Civil Aviat Safety Engn, Guanghan 618307, Sichuan, Peoples R China
基金
国家重点研发计划;
关键词
Lithium-ion battery; Charging; discharging rate; Low pressure; Thermal safety; Thermal runaway; COMBUSTION CHARACTERISTICS; DEGRADATION MECHANISMS; HEAT-GENERATION; AIRCRAFT; VOLTAGE; ABUSE;
D O I
10.1149/1945-7111/abbfd8
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
With the widespread application of lithium-ion batteries (LIBs), their applications and transportation in the aviation field are increasing. However, the inherent risk of LIBs and the special operating environment of the aircraft bring new challenges to the fight safety. In this paper, the thermal runaway (TR) characteristics of LIBs with different charging/discharging rates are studied under the pressure of the cruising altitude of civil aircraft (20 kPa). The results show that the increase of charging/discharging rate leads to the advance of the gas release and TR time, and the decrease of TR intensity under both 20 kPa and atmospheric pressures (95 kPa). The decrease of environmental pressure results in the advance of TR time and the decrease of TR intensity. Moreover, at 20 kPa, the TR time differences between batteries with different charging/discharging rates are bigger than that at 95 kPa. The dV/dQ and impedance results show that the loss of cathode materials and the side reactions are the main factors for the decrease of battery safety. The lower external pressure facilitates the open of the safety valve and the oxidation of electrolytes, which further enlarge the safety differences between LIBs with different charging/discharging rates.
引用
收藏
页数:8
相关论文
共 50 条
  • [31] Progress on thermal runaway propagation characteristics and prevention strategies of lithium-ion batteries
    Ma, Ruixin
    Liu, Jizhen
    Wang, Shuangfeng
    Rao, Zhonghao
    Cai, Yang
    Wu, Weixiong
    CHINESE SCIENCE BULLETIN-CHINESE, 2021, 66 (23): : 2991 - 3004
  • [32] An online evaluation model for mechanical/thermal states in prismatic lithium-ion batteries under fast charging/discharging
    Huang, Zhiliang
    Wang, Huaixing
    Zou, Wei
    Zhang, Rongchuan
    Wang, Yuhan
    Chen, Jie
    Wu, Shengben
    ENERGY, 2024, 302
  • [33] Thermal Runaway Characteristics and Fire Behaviors of Lithium-Ion Batteries Corroded by Salt Solution Immersion
    Zhao, Qingjie
    Wang, Zhi
    Wang, Shaojia
    Shi, Bobo
    Li, Zhihua
    Liu, Hang
    FIRE TECHNOLOGY, 2024,
  • [34] Understanding the combustion characteristics and establishing a safety evaluation technique based on the overcharged thermal runaway of lithium-ion batteries
    Bi, Shansong
    Yu, Zhanglong
    Fang, Sheng
    Shen, Xueling
    Cui, Yi
    Yun, Fengling
    Shi, Dong
    Gao, Min
    Zhang, Hang
    Tang, Ling
    Zhang, Xin
    Fang, Yanyan
    Zhang, Xiangjun
    JOURNAL OF ENERGY STORAGE, 2023, 73
  • [35] A review of thermal runaway prevention and mitigation strategies for lithium-ion batteries
    Shahid, Seham
    Agelin-Chaab, Martin
    ENERGY CONVERSION AND MANAGEMENT-X, 2022, 16
  • [36] Jet behavior of prismatic lithium-ion batteries during thermal runaway
    Zou, Kaiyu
    Chen, Xiao
    Ding, Zhiwei
    Gu, Jia
    Lu, Shouxiang
    APPLIED THERMAL ENGINEERING, 2020, 179
  • [37] Research on key parameters of thermal runaway in small lithium-ion batteries
    Li, Lixia
    Yao, Mingxun
    Chen, Zhen
    Cheng, Yuhe
    2024 3RD INTERNATIONAL CONFERENCE ON ENERGY AND ELECTRICAL POWER SYSTEMS, ICEEPS 2024, 2024, : 525 - 528
  • [38] A survey of methods for monitoring and detecting thermal runaway of lithium-ion batteries
    Liao, Zhenghai
    Zhang, Shen
    Li, Kang
    Zhang, Guoqiang
    Habetler, Thomas G.
    JOURNAL OF POWER SOURCES, 2019, 436
  • [39] Suppressing Thermal Runaway of Lithium-ion Batteries by Using Insulation Material
    Wu, Zhuoyan
    Jia, Jun
    Yin, Likun
    Zhong, Weidong
    Kang, Zhe
    Jiang, Zhuoyu
    2022 4TH INTERNATIONAL CONFERENCE ON SMART POWER & INTERNET ENERGY SYSTEMS, SPIES, 2022, : 1838 - 1843
  • [40] Characterization on the thermal runaway of commercial 18650 lithium-ion batteries used in electric vehicle
    Duh, Yih-Shing
    Tsai, Meng-Ting
    Kao, Chen-Shan
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2017, 127 (01) : 983 - 993