Second Order Alternating Harmonic Number Sums

被引:3
作者
Sofo, Anthony [1 ]
机构
[1] Victoria Univ, POB 14428, Melbourne, Vic 8001, Australia
关键词
Combinatorial series identities; Summation formulas; Integral representation; Partial fraction approach; Alternating harmonic numbers; Binomial coefficients; Polylogarithm function; IDENTITIES; DIGAMMA;
D O I
10.2298/FIL1613511S
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We develop new closed form representations of sums of alternating harmonic numbers of order two and reciprocal binomial coefficients. Moreover we develop new integral representations in terms of harmonic numbers of order two.
引用
收藏
页码:3511 / 3524
页数:14
相关论文
共 22 条
[1]  
[Anonymous], COMPUTATIONAL TECHNI
[2]   The evaluation of character Euler double sums [J].
Borwein, J. M. ;
Zucker, I. J. ;
Boersma, J. .
RAMANUJAN JOURNAL, 2008, 15 (03) :377-405
[3]  
Choi J., 2013, J INEQUAL APPL, V49
[4]   Some summation formulas involving harmonic numbers and generalized harmonic numbers [J].
Choi, Junesang ;
Srivastava, H. M. .
MATHEMATICAL AND COMPUTER MODELLING, 2011, 54 (9-10) :2220-2234
[5]   Summation formulae Involving Harmonic Numbers [J].
Chu, Wenchang .
FILOMAT, 2012, 26 (01) :143-152
[6]   On generalized harmonic number sums [J].
Coffey, Mark W. ;
Lubbers, Nicholas .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (02) :689-698
[7]   On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams [J].
Coffey, MW .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2005, 183 (01) :84-100
[8]   A note on harmonic numbers, umbral calculus and generating functions [J].
Dattoli, G. ;
Srivastava, H. M. .
APPLIED MATHEMATICS LETTERS, 2008, 21 (07) :686-693
[9]   Euler sums and contour integral representations [J].
Flajolet, P ;
Salvy, B .
EXPERIMENTAL MATHEMATICS, 1998, 7 (01) :15-35
[10]   The polygamma function psi((k))(X) for x=1/4 and x=3/4 [J].
Kolbig, KS .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 1996, 75 (01) :43-46