Free Probability for Pairs of Faces I

被引:64
作者
Voiculescu, Dan-Virgil [1 ]
机构
[1] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
MULTIPLICATION;
D O I
10.1007/s00220-014-2060-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider a notion of bi-freeness for systems of non-commutative random variables with two faces, one of left variables and another of right variables. This includes bi-free convolution operations, bi-free cumulants, the bi-free central limit, and bi-freeness with amalgamation over an algebra B.
引用
收藏
页码:955 / 980
页数:26
相关论文
共 18 条
[1]  
[Anonymous], 1998, Ecole d'Ete de Probabilites de Saint-Flour XXVIII-1998
[2]   FREE PROBABILITY OF TYPE B: ANALYTIC INTERPRETATION AND APPLICATIONS [J].
Belinschi, S. T. ;
Shlyakhtenko, D. .
AMERICAN JOURNAL OF MATHEMATICS, 2012, 134 (01) :193-234
[3]   Non-crossing cumulants of type B [J].
Biane, P ;
Goodman, F ;
Nica, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 355 (06) :2263-2303
[4]  
Blitvic N, 2012, ARXIV12054003V1MATHP
[5]   The (q, t)-Gaussian process [J].
Blitvic, Natasha .
JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 263 (10) :3270-3305
[6]  
Collins B, 2007, DOC MATH, V12, P1
[7]   Matricially free random variables [J].
Lenczewski, Romuald .
JOURNAL OF FUNCTIONAL ANALYSIS, 2010, 258 (12) :4075-4121
[8]   Monotonic independence, monotonic central limit theorem and monotonic law of small numbers [J].
Muraki, N .
INFINITE DIMENSIONAL ANALYSIS QUANTUM PROBABILITY AND RELATED TOPICS, 2001, 4 (01) :39-58
[9]  
Nica A, 1996, AM J MATH, V118, P799
[10]  
Nica A., 2006, LECT COMBINATORICS F, V335