Pullback attractor for non-homogeneous micropolar fluid flows in non-smooth domains

被引:9
作者
Chen, Guang-Xia [1 ]
机构
[1] Henan Polytech Univ, Sch Math & Informat Sci, Jiaozuo 454003, Peoples R China
关键词
Pullback attractor; Micropolar fluid; Non-homogeneous boundary; Lipschitz domains; REACTION-DIFFUSION EQUATIONS; NAVIER-STOKES EQUATIONS; UNBOUNDED-DOMAINS; DYNAMICAL-SYSTEMS; GLOBAL ATTRACTORS; DIMENSION; EXISTENCE;
D O I
10.1016/j.nonrwa.2008.10.005
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, which concerns two-dimensional non-autonomous micropolar fluid flows in a Lipschitz bounded domain with non-homogeneous boundary conditions, the existence of a pullback attractor in H is shown under the following assumptions: the external forces f (t) is an element of L-loc(2)(R, nu') satisfying integral(t)(-infinity) e(sigma s)vertical bar f (S)vertical bar(2)(nu') < infinity for some sigma > 0 characterized later; and the non-homogeneous boundary condition phi(x) is an element of L-infinity(partial derivative Omega). (C) 2008 Elsevier Ltd. All rights reserved.
引用
收藏
页码:3018 / 3027
页数:10
相关论文
共 21 条
[1]   Attractor dimension estimate for plane shear flow of micropolar fluid with free boundary [J].
Boukrouche, M ;
Lukaszewicz, G .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (14) :1673-1694
[2]  
Brown RM, 2000, INDIANA U MATH J, V49, P81
[3]   Pullback attractors for non-autonomous 2D-Navier-Stokes equations in some unbounded domains [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
COMPTES RENDUS MATHEMATIQUE, 2006, 342 (04) :263-268
[4]   Pullback attractors for asymptotically compact non-autonomous dynamical systems [J].
Caraballo, T ;
Lukaszewicz, G ;
Real, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2006, 64 (03) :484-498
[5]   Pullback attractors of nonautonomous and stochastic multivalued dynamical systems [J].
Caraballo, T ;
Langa, JA ;
Melnik, VS ;
Valero, J .
SET-VALUED ANALYSIS, 2003, 11 (02) :153-201
[6]   Uniform attractors of non-homogeneous micropolar fluid flows in non-smooth domains [J].
Chen, Jianwen ;
Chen, Zhi-Min ;
Dong, Bo-Qing .
NONLINEARITY, 2007, 20 (07) :1619-1635
[7]   Existence of H2-global attractors of two-dimensional micropolar fluid flows [J].
Chen, Jianwen ;
Chen, Zhi-Min ;
Dong, Bo-Qing .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 322 (02) :512-522
[8]   Random attractors [J].
Crauel H. ;
Debussche A. ;
Flandoli F. .
Journal of Dynamics and Differential Equations, 1997, 9 (2) :307-341
[9]   ATTRACTORS FOR RANDOM DYNAMICAL-SYSTEMS [J].
CRAUEL, H ;
FLANDOLI, F .
PROBABILITY THEORY AND RELATED FIELDS, 1994, 100 (03) :365-393
[10]   Global attractors of two-dimensional micropolar fluid flows in some unbounded domains [J].
Dong, Bo-Qing ;
Chen, Zhi-Min .
APPLIED MATHEMATICS AND COMPUTATION, 2006, 182 (01) :610-620