Integrated Multiparametric Radiomics and Informatics System for Characterizing Breast Tumor Characteristics with the OncotypeDX Gene Assay

被引:16
作者
Jacobs, Michael A. [1 ,2 ]
Umbricht, Christopher B. [2 ]
Parekh, Vishwa S. [1 ,3 ]
El Khouli, Riham H. [4 ]
Cope, Leslie [5 ]
Macura, Katarzyna J. [1 ,2 ]
Harvey, Susan [1 ,6 ]
Wolff, Antonio C. [2 ]
机构
[1] Johns Hopkins Sch Med, Russell H Morgan Dept Radiol & Radiol Sci, Baltimore, MD 21205 USA
[2] Johns Hopkins Sch Med, Sidney Kimmel Comprehens Canc Ctr, Baltimore, MD 21205 USA
[3] Johns Hopkins Univ, Dept Comp Sci, Baltimore, MD 21210 USA
[4] Univ Kentucky, Dept Radiol & Radiol Sci, Lexington, KY 40536 USA
[5] Johns Hopkins Sch Med, Dept Oncol, Baltimore, MD 21205 USA
[6] Hologic Inc, 36 Apple Ridge Rd, Danbury, CT 06810 USA
基金
美国国家卫生研究院;
关键词
mpRad; radiomics; multiparametric radiomics; informatics; IRIS; machine learning; breast; magnetic resonance imaging; diffusion-weighted imaging; DWI; ADC map; cancer; OncotypeDX; CONTRAST-ENHANCED MRI; PHARMACOKINETIC PARAMETERS; TEMPORAL RESOLUTION; TEXTURAL FEATURES; DCE-MRI; DIFFUSION; RECURRENCE; EXPRESSION; CENTRALITY; DIAGNOSIS;
D O I
10.3390/cancers12102772
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Simple Summary Artificial Intelligence methods using machine learning and radiomics is an emerging area of research for radiological and oncological applications for patient management. Recent evidence from breast cancer suggests that different breast cancer subtypes may respond differently to adjuvant therapies. The use of a 21-gene array assay called OncotypeDX can predict potential recurrence of cancer in patients with estrogen positive breast cancer after treatment, however, there are potential cost disadvantages that hamper its widespread use. Multiparametric magnetic resonance imaging can simultaneously identify key functional parameters and provide unique imaging phenotypes of breast cancer, which is used in radiomic analysis. Radiomics provide quantitative information of different tissue types. We have developed a new machine learning radiomic informatics tool that integrates clinical and imaging variables, single, and multiparametric radiomics to compare with the OncotypeDX test to stratify patients into three risk groups: low, medium, and high risk of breast cancer recurrence. Optimal use of multiparametric magnetic resonance imaging (mpMRI) can identify key MRI parameters and provide unique tissue signatures defining phenotypes of breast cancer. We have developed and implemented a new machine-learning informatic system, termed Informatics Radiomics Integration System (IRIS) that integrates clinical variables, derived from imaging and electronic medical health records (EHR) with multiparametric radiomics (mpRad) for identifying potential risk of local or systemic recurrence in breast cancer patients. We tested the model in patients (n = 80) who had Estrogen Receptor positive disease and underwent OncotypeDX gene testing, radiomic analysis, and breast mpMRI. The IRIS method was trained using the mpMRI, clinical, pathologic, and radiomic descriptors for prediction of the OncotypeDX risk score. The trained mpRad IRIS model had a 95% and specificity was 83% with an Area Under the Curve (AUC) of 0.89 for classifying low risk patients from the intermediate and high-risk groups. The lesion size was larger for the high-risk group (2.9 +/- 1.7 mm) and lower for both low risk (1.9 +/- 1.3 mm) and intermediate risk (1.7 +/- 1.4 mm) groups. The lesion apparent diffusion coefficient (ADC) map values for high- and intermediate-risk groups were significantly (p < 0.05) lower than the low-risk group (1.14 vs. 1.49 x 10(-3) mm(2)/s). These initial studies provide deeper insight into the clinical, pathological, quantitative imaging, and radiomic features, and provide the foundation to relate these features to the assessment of treatment response for improved personalized medicine.
引用
收藏
页码:1 / 23
页数:23
相关论文
共 70 条
[1]   Comparative analysis of nonlinear dimensionality reduction techniques for breast MRI segmentation [J].
Akhbardeh, Alireza ;
Jacobs, Michael A. .
MEDICAL PHYSICS, 2012, 39 (04) :2275-2289
[2]   TEXTURAL FEATURES CORRESPONDING TO TEXTURAL PROPERTIES [J].
AMADASUN, M ;
KING, R .
IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS, 1989, 19 (05) :1264-1274
[3]  
[Anonymous], 1983, FRACTAL GEOMETRY NAT
[4]   Emergence of scaling in random networks [J].
Barabási, AL ;
Albert, R .
SCIENCE, 1999, 286 (5439) :509-512
[5]  
BAVELAS A, 1950, J ACOUST SOC AM, V22, P723
[6]   Magnetic resonance imaging of the breast prior to biopsy [J].
Bluemke, DA ;
Gatsonis, CA ;
Chen, MH ;
DeAngelis, GA ;
DeBruhl, N ;
Harms, S ;
Heywang-Köbrunner, SH ;
Hylton, N ;
Kuhl, CK ;
Lehman, C ;
Pisano, ED ;
Causer, P ;
Schnitt, SJ ;
Smazal, SF ;
Stelling, CB ;
Weatherall, PT ;
Schnall, MD .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 2004, 292 (22) :2735-2742
[7]   PHARMACOKINETIC PARAMETERS IN CNS GD-DTPA ENHANCED MR IMAGING [J].
BRIX, G ;
SEMMLER, W ;
PORT, R ;
SCHAD, LR ;
LAYER, G ;
LORENZ, WJ .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 1991, 15 (04) :621-628
[8]   Breast Cancer [J].
Carlson, Robert W. ;
Allred, D. Craig ;
Anderson, Benjamin O. ;
Burstein, Harold J. ;
Carter, W. Bradford ;
Edge, Stephen B. ;
Erban, John K. ;
Farrar, William B. ;
Goldstein, Lori J. ;
Gradishar, William J. ;
Hayes, Daniel F. ;
Hudis, Clifford A. ;
Jahanzeb, Mohammad ;
Kiel, Krystyna ;
Ljung, Britt-Marie ;
Marcom, P. Kelly ;
Mayer, Ingrid A. ;
McCormick, Beryl ;
Nabell, Lisle M. ;
Pierce, Lori J. ;
Reed, Elizabeth C. ;
Smith, Mary Lou ;
Somlo, George ;
Theriault, Richard L. ;
Topham, Neal S. ;
Ward, John H. ;
Winer, Eric P. ;
Wolff, Antonio C. .
JOURNAL OF THE NATIONAL COMPREHENSIVE CANCER NETWORK, 2009, 7 (02) :122-+
[9]   Texture analysis of medical images [J].
Castellano, G ;
Bonilha, L ;
Li, LM ;
Cendes, F .
CLINICAL RADIOLOGY, 2004, 59 (12) :1061-1069
[10]   Diffusion magnetic resonance imaging: an early surrogate marker of therapeutic efficacy in brain tumors [J].
Chenevert, TL ;
Stegman, LD ;
Taylor, JMG ;
Robertson, PL ;
Greenberg, HS ;
Rehemtulla, A ;
Ross, BD .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2000, 92 (24) :2029-2036