A lithium ion battery exploiting a composite Fe2O3 anode and a high voltage Li1.35Ni0.48Fe0.1Mn1.72O4 cathode

被引:25
作者
Verrelli, Roberta [1 ]
Brescia, Rosaria [2 ]
Scarpellini, Alice [2 ]
Manna, Liberato [2 ]
Scrosati, Bruno [2 ]
Hassoun, Jusef [1 ]
机构
[1] Univ Roma La Sapienza, Dept Chem, I-00185 Rome, Italy
[2] IIT, Dept Nanochem, I-16163 Genoa, Italy
关键词
ELECTROCHEMICAL PROPERTIES; ELECTRODE MATERIALS; CAPACITY; CARBON; HOLLOW; FE; NANOSTRUCTURES; LINI0.5MN1.5O4; NANOPARTICLES; CHALLENGES;
D O I
10.1039/c4ra12598c
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
In this paper we report a new lithium ion battery (LIB) consisting of a conversion-type, high capacity Fe2O3-Meso Carbon Micro Beads (MCMB) composite anode and a high voltage, Li1.35Ni0.48Fe0.1Mn1.72O4 cathode, prepared by using facile, low cost synthetic pathways. These electrodes have been characterized by a series of techniques including scanning and transmission electron microscopy, X-ray diffraction analysis, potentiodynamic cycling with galvanostatic acceleration (PCGA) and galvanostatic cycling tests in lithium cells at different C-rates. The results show that the Fe2O3-MCMB anode benefits by a composite, sub micrometric morphology and by a stable specific capacity ranging from 800 to 600 mA h g(-1), evolving around 0.9 V, while the Li1.35Ni0.48Fe0.1Mn1.72O4 cathode is formed by an agglomeration of micrometric crystals delivering a reversible capacity of about 115 mA h g(-1) at a 4.7 V high voltage. The combination of the Fe2O3-MCMB anode with the Li1.35Ni0.48Fe0.1Mn1.72O4 cathode leads to a complete lithium ion battery having an operating voltage of about 3 V, a high coulombic efficiency and a stable capacity of about 100 mA h g(-1), which translates into in a theoretical energy density of about 300 Wh kg(-1).
引用
收藏
页码:61855 / 61862
页数:8
相关论文
共 29 条
[1]   Studies of cycling behavior, ageing, and interfacial reactions of LiNi0.5Mn1.5O4 and carbon electrodes for lithium-ion 5-V cells [J].
Aurbach, Doron ;
Markovsky, Boris ;
Talyossef, Yosef ;
Salitra, Gregory ;
Kim, Hyeong-Jin ;
Choi, Seungdon .
JOURNAL OF POWER SOURCES, 2006, 162 (02) :780-789
[2]   Insights about the irreversible capacity of LiNi0.5Mn1.5O4 cathode materials in lithium batteries [J].
Brutti, Sergio ;
Greco, Giorgia ;
Reale, Priscilla ;
Panero, Stefania .
ELECTROCHIMICA ACTA, 2013, 106 :483-493
[3]   Limitations of Disordered Carbons Obtained from Biomass as Anodes for Real Lithium-Ion Batteries [J].
Caballero, Alvaro ;
Hernan, Lourdes ;
Morales, Julian .
CHEMSUSCHEM, 2011, 4 (05) :658-663
[4]   Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions [J].
Cabana, Jordi ;
Monconduit, Laure ;
Larcher, Dominique ;
Rosa Palacin, M. .
ADVANCED MATERIALS, 2010, 22 (35) :E170-E192
[5]   Hematite (α-Fe2O3) nanoparticles on vulcan carbon as an ultrahigh capacity anode material in lithium ion battery [J].
Chaudhari, Nitin K. ;
Kim, Min-Sik ;
Bae, Tae-Sung ;
Yu, Jong-Sung .
ELECTROCHIMICA ACTA, 2013, 114 :60-67
[6]   A novel layered titanoniobate LiTiNbO5:: Topotactic synthesis and electrochemistry versus lithium [J].
Colin, J. -F. ;
Pralong, V. ;
Caignaert, V. ;
Hervieu, M. ;
Raveau, B. .
INORGANIC CHEMISTRY, 2006, 45 (18) :7217-7223
[7]   Direct synthesis of iron oxide nanoparticles on an iron current collector as binder-free anode materials for lithium-ion batteries [J].
Ding, Yunhai ;
Li, Jiaxin ;
Zhao, Yi ;
Guan, Lunhui .
MATERIALS LETTERS, 2012, 81 :105-107
[8]   Preparation and electrochemical properties of high-voltage cathode materials, LiMyNi0.5-yMn1.5O4 (M = Fe, Cu, Al, Mg; y=0.0-0.4) [J].
Fey, GTK ;
Lu, CZ ;
Kumar, TP .
JOURNAL OF POWER SOURCES, 2003, 115 (02) :332-345
[9]   Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths [J].
Fugallo, Giorgia ;
Cepellotti, Andrea ;
Paulatto, Lorenzo ;
Lazzeri, Michele ;
Marzari, Nicola ;
Mauri, Francesco .
NANO LETTERS, 2014, 14 (11) :6109-6114
[10]   The Li-Ion Rechargeable Battery: A Perspective [J].
Goodenough, John B. ;
Park, Kyu-Sung .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (04) :1167-1176