On the importance of the thermosiphon effect in CPG (CO2 plume geothermal) power systems

被引:101
作者
Adams, Benjamin M. [1 ]
Kuehn, Thomas H. [1 ]
Bielicki, Jeffrey M. [2 ,3 ]
Randolph, Jimmy B. [4 ]
Saar, Martin O. [4 ]
机构
[1] Univ Minnesota, Dept Mech Engn, Minneapolis, MN 55455 USA
[2] Ohio State Univ, Dept Civil Environm & Geodet Engn, Columbus, OH 43210 USA
[3] Ohio State Univ, John Glenn Sch Publ Affairs, Columbus, OH 43210 USA
[4] Univ Minnesota, Dept Earth Sci, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
Carbon dioxide; Geothermal energy; Carbon dioxide utilization; Thermosiphon; Renewable energy; Carbon dioxide plume; GAS-RESERVOIRS; NUMERICAL-SIMULATION; CARBON; SEQUESTRATION; INJECTION; FLUID; FLOW;
D O I
10.1016/j.energy.2014.03.032
中图分类号
O414.1 [热力学];
学科分类号
摘要
CPG (CO2 Plume Geothermal) energy systems use CO2 to extract thermal energy from naturally permeable geologic formations at depth. CO2 has advantages over brine: high mobility, low solubility of amorphous silica, and higher density sensitivity to temperature. The density of CO2 changes substantially between geothermal reservoir and surface plant, resulting in a buoyancy-driven convective current - a thermosiphon - that reduces or eliminates pumping requirements. We estimated and compared the strength of this thermosiphon for CO2 and for 20 weight percent NaCl brine for reservoir depths up to 5 km and geothermal gradients of 20, 35, and 50 degrees C/km. We found that through the reservoir, CO2 has a pressure drop approximately 3- 12 times less than brine at the same mass flowrate, making the CO2 thermosiphon sufficient to produce power using reservoirs as shallow as 0.5 km. At 2.5 km depth with a 35 degrees C/km gradient the approximate western U.S. continental mean - the CO2 thermosiphon converted approximately 10% of the energy extracted from the reservoir to fluid circulation, compared to less than 1% with brine, where additional mechanical pumping is necessary. We found CO2 is a particularly advantageous working fluid at depths between 0.5 km and 3 km. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:409 / 418
页数:10
相关论文
共 34 条
[1]  
[Anonymous], HEMISPHERE
[2]  
[Anonymous], 2017, International Energy Statistics
[3]  
[Anonymous], CONTRIBUTION WORKING
[4]   Electricity generation using a carbon-dioxide thermosiphon [J].
Atrens, Aleks D. ;
Gurgenci, Hal ;
Rudolph, Victor .
GEOTHERMICS, 2010, 39 (02) :161-169
[5]   CO2 Thermosiphon for Competitive Geothermal Power Generation [J].
Atrens, Aleks D. ;
Gurgenci, Hal ;
Rudolph, Victor .
ENERGY & FUELS, 2009, 23 (1-2) :553-557
[6]   Numerical simulation of salt precipitation in the fractures of a CO2-enhanced geothermal system [J].
Borgia, Andrea ;
Pruess, Karsten ;
Kneafsey, Timothy J. ;
Oldenburg, Curtis M. ;
Pan, Lehua .
GEOTHERMICS, 2012, 44 :13-22
[7]  
Brown D.W., 2000, P 25 WORKSH GEOTH RE
[8]   Integrated geothermal-CO2 reservoir systems: Reducing carbon intensity through sustainable energy production and secure CO2 storage [J].
Buscheck, Thomas A. ;
Elliot, Thomas R. ;
Celia, Michael A. ;
Chen, Mingjie ;
Sun, Yunwei ;
Hao, Yue ;
Lu, Chuanhe ;
Wolery, Thomas J. ;
Aines, Roger D. .
GHGT-11, 2013, 37 :6587-6594
[9]   A benchmark study on problems related to CO2 storage in geologic formations [J].
Class, Holger ;
Ebigbo, Anozie ;
Helmig, Rainer ;
Dahle, Helge K. ;
Nordbotten, Jan M. ;
Celia, Michael A. ;
Audigane, Pascal ;
Darcis, Melanie ;
Ennis-King, Jonathan ;
Fan, Yaqing ;
Flemisch, Bernd ;
Gasda, Sarah E. ;
Jin, Min ;
Krug, Stefanie ;
Labregere, Diane ;
Beni, Ali Naderi ;
Pawar, Rajesh J. ;
Sbai, Adil ;
Thomas, Sunil G. ;
Trenty, Laurent ;
Wei, Lingli .
COMPUTATIONAL GEOSCIENCES, 2009, 13 (04) :409-434
[10]  
*DEP EN, 2012, GUID PROV INP MOD