Identification and prediction of Parkinson's disease subtypes and progression using machine learning in two cohorts

被引:41
作者
Dadu, Anant [1 ,2 ,3 ,4 ]
Satone, Vipul [5 ]
Kaur, Rachneet [5 ]
Hashemi, Sayed Hadi [1 ]
Leonard, Hampton [2 ,3 ,4 ,6 ]
Iwaki, Hirotaka [2 ,3 ,4 ,6 ]
Makarious, Mary B. [6 ,7 ,8 ]
Billingsley, Kimberley J. [6 ]
Bandres-Ciga, Sara [2 ,3 ,6 ]
Sargent, Lana J. [2 ,3 ,9 ]
Noyce, Alastair J. [8 ,10 ,11 ]
Daneshmand, Ali [12 ]
Blauwendraat, Cornelis [2 ,3 ,6 ]
Marek, Ken [13 ,14 ]
Scholz, Sonja W.
Singleton, Andrew B. [2 ,3 ,6 ]
Nalls, Mike A. [2 ,3 ,4 ,6 ]
Campbell, Roy H. [1 ]
Faghri, Faraz [2 ,3 ,4 ,6 ]
机构
[1] Univ Illinois, Dept Comp Sci, Champaign, IL 61820 USA
[2] NIH, Natl Inst Aging, Ctr Alzheimers & Related Dementias CARD, Bethesda, MD 20892 USA
[3] NIH, NINDS, Bethesda, MD 20892 USA
[4] Data Tecn Int, Washington, DC 20812 USA
[5] Univ Illinois, Dept Ind & Enterprise Syst Engn, Champaign, IL 61820 USA
[6] Natl Inst Aging, NIH, Lab Neurogenet, Bethesda, MD 20892 USA
[7] UCL Queen Sq Inst Neurol, Dept Clin & Movement Neurosci, London, England
[8] UCL, UCL Movement Disorders Ctr, London, England
[9] Virginia Commonwealth Univ, Sch Nursing, Richmond, VA 23298 USA
[10] Queen Mary Univ London, Wolfson Inst Prevent Med, Prevent Neurol Unit, London, MD, England
[11] Royal London Hosp, Dept Neurol, Sch Med, London, MD, England
[12] Boston Univ, Boston Med Ctr, Dept Neurol, Sch Med, Boston, MA 02118 USA
[13] InviCRO LLC, Boston, MA USA
[14] Mol Neuroimaging, Div InviCRO, New Haven, CT USA
基金
美国国家卫生研究院;
关键词
QUESTIONNAIRE; DIAGNOSIS; CRITERIA;
D O I
10.1038/s41531-022-00439-z
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The clinical manifestations of Parkinson's disease (PD) are characterized by heterogeneity in age at onset, disease duration, rate of progression, and the constellation of motor versus non-motor features. There is an unmet need for the characterization of distinct disease subtypes as well as improved, individualized predictions of the disease course. We used unsupervised and supervised machine learning methods on comprehensive, longitudinal clinical data from the Parkinson's Disease Progression Marker Initiative (n = 294 cases) to identify patient subtypes and to predict disease progression. The resulting models were validated in an independent, clinically well-characterized cohort from the Parkinson's Disease Biomarker Program (n = 263 cases). Our analysis distinguished three distinct disease subtypes with highly predictable progression rates, corresponding to slow, moderate, and fast disease progression. We achieved highly accurate projections of disease progression 5 years after initial diagnosis with an average area under the curve (AUC) of 0.92 (95% CI: 0.95 & PLUSMN; 0.01) for the slower progressing group (PDvec1), 0.87 & PLUSMN; 0.03 for moderate progressors, and 0.95 & PLUSMN; 0.02 for the fast-progressing group (PDvec3). We identified serum neurofilament light as a significant indicator of fast disease progression among other key biomarkers of interest. We replicated these findings in an independent cohort, released the analytical code, and developed models in an open science manner. Our data-driven study provides insights to deconstruct PD heterogeneity. This approach could have immediate implications for clinical trials by improving the detection of significant clinical outcomes. We anticipate that machine learning models will improve patient counseling, clinical trial design, and ultimately individualized patient care.
引用
收藏
页数:12
相关论文
共 42 条
[1]   VISUOSPATIAL JUDGMENT - CLINICAL TEST [J].
BENTON, AL ;
VARNEY, NR ;
HAMSHER, KD .
ARCHIVES OF NEUROLOGY, 1978, 35 (06) :364-367
[2]  
Brandt J., 1991, CLIN NEUROPSYCHOL, V5, P125, DOI [10.1080/13854049108403297, DOI 10.1080/13854049108403297]
[3]  
Breiman L., 2001, MACH LEARN, V45, P5
[4]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[5]  
Dadu A., 2021, APPL MACHINE LEARNIN
[6]  
Faghri F., 2018, bioRxiv, DOI [DOI 10.1101/338913, 10.1101/338913v2]
[7]   Identifying and predicting amyotrophic lateral sclerosis clinical subgroups: a population-based machine-learning study [J].
Faghri, Faraz ;
Brunn, Fabian ;
Dadu, Anant ;
Zucchi, Elisabetta ;
Martinelli, Ilaria ;
Mazzini, Letizia ;
Vasta, Rosario ;
Canosa, Antonio ;
Moglia, Cristina ;
Calvo, Andrea ;
Nalls, Michael A. ;
Campbell, Roy H. ;
Mandrioli, Jessica ;
Traynor, Bryan J. ;
Chio, Adriano .
LANCET DIGITAL HEALTH, 2022, 4 (05) :E359-E369
[8]   Clinical criteria for subtyping Parkinson's disease: biomarkers and longitudinal progression [J].
Fereshtehnejad, Seyed-Mohammad ;
Zeighami, Yashar ;
Dagher, Alain ;
Postuma, Ronald B. .
BRAIN, 2017, 140 :1959-1976
[9]   New Clinical Subtypes of Parkinson Disease and Their Longitudinal Progression A Prospective Cohort Comparison With Other Phenotypes [J].
Fereshtehnejad, Seyed-Mohammad ;
Romenets, Silvia Rios ;
Anang, Julius B. M. ;
Latreille, Veronique ;
Gagnon, Jean-Francois ;
Postuma, Ronald B. .
JAMA NEUROLOGY, 2015, 72 (08) :863-873
[10]   Movement Disorder Society-Sponsored Revision of the Unified Parkinson's Disease Rating Scale (MDS-UPDRS): Scale Presentation and Clinimetric Testing Results [J].
Goetz, Christopher G. ;
Tilley, Barbara C. ;
Shaftman, Stephanie R. ;
Stebbins, Glenn T. ;
Fahn, Stanley ;
Martinez-Martin, Pablo ;
Poewe, Werner ;
Sampaio, Cristina ;
Stern, Matthew B. ;
Dodel, Richard ;
Dubois, Bruno ;
Holloway, Robert ;
Jankovic, Joseph ;
Kulisevsky, Jaime ;
Lang, Anthony E. ;
Lees, Andrew ;
Leurgans, Sue ;
LeWitt, Peter A. ;
Nyenhuis, David ;
Olanow, C. Warren ;
Rascol, Olivier ;
Schrag, Anette ;
Teresi, Jeanne A. ;
van Hilten, Jacobus J. ;
LaPelle, Nancy .
MOVEMENT DISORDERS, 2008, 23 (15) :2129-2170