OPTIMAL EAVESDROPPING ON NOISY STATES IN QUANTUM KEY DISTRIBUTION

被引:10
作者
Shadman, Z. [1 ]
Kampermann, H. [1 ]
Meyer, T. [1 ]
Bruss, D. [1 ]
机构
[1] Univ Dusseldorf, Inst Theoret Phys 3, D-40225 Dusseldorf, Germany
关键词
Quantum key distribution; mixed states; white noise; eavesdropping; mutual information; CRYPTOGRAPHY; INFORMATION;
D O I
10.1142/S0219749909004554
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
We study eavesdropping in quantum key distribution with the six state protocol, when the signal states are mixed with white noise. This situation may arise either when Alice deliberately adds noise to the signal states before they leave her lab, or in a realistic scenario where Eve cannot replace the noisy quantum channel by a noiseless one. We find Eve's optimal mutual information with Alice, for individual attacks, as a function of the qubit error rate. Our result is that added quantum noise reduces Eve's mutual information more than Bob's.
引用
收藏
页码:297 / 306
页数:10
相关论文
共 10 条
[1]   Incoherent and coherent eavesdropping in the six-state protocol of quantum cryptography [J].
Bechmann-Pasquinucci, H ;
Gisin, N .
PHYSICAL REVIEW A, 1999, 59 (06) :4238-4248
[2]  
Bennett C.H., 1984, P IEEE INT C COMP SY, V175, DOI DOI 10.1016/J.TCS.2014.05.025
[3]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[4]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021
[5]  
CSISZAR I, 1978, IEEE T INFORM THEORY, V24, P339, DOI 10.1109/TIT.1978.1055892
[6]   INFORMATION AND QUANTUM MEASUREMENT [J].
DAVIES, EB .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1978, 24 (05) :596-599
[7]   Quantum-state disturbance versus information gain: Uncertainty relations for quantum information [J].
Fuchs, CA ;
Peres, A .
PHYSICAL REVIEW A, 1996, 53 (04) :2038-2045
[8]   Quantum cryptography [J].
Gisin, N ;
Ribordy, GG ;
Tittel, W ;
Zbinden, H .
REVIEWS OF MODERN PHYSICS, 2002, 74 (01) :145-195
[9]  
Nielsen M. A., 2000, Quantum Computation and Quantum Information
[10]   Information-theoretic security proof for quantum-key-distribution protocols [J].
Renner, R ;
Gisin, N ;
Kraus, B .
PHYSICAL REVIEW A, 2005, 72 (01)