Coking-Resistant Iron Catalyst in Ethane Dehydrogenation Achieved through Siliceous Zeolite Modulation

被引:180
作者
Yang, Zhiyuan [1 ,2 ]
Li, Huan [3 ]
Zhou, Hang [1 ]
Wang, Liang [1 ]
Wang, Lingxiang [2 ]
Zhu, Qiuyan [2 ]
Xiao, Jianping [3 ]
Meng, Xiangju [2 ]
Chen, Junxiang [4 ]
Xiao, Feng-Shou [1 ,2 ]
机构
[1] Zhejiang Univ, Coll Chem & Biol Engn, Key Lab Biomass Chem Engn, Minist Educ, Hangzhou 310027, Peoples R China
[2] Zhejiang Univ, Dept Chem, Key Lab Appl Chem Zhejiang Prov, Hangzhou 310028, Peoples R China
[3] Chinese Acad Sci, Dalian Inst Chem Phys, State Key Lab Catalysis, Dalian 116023, Peoples R China
[4] TILON Grp Technol Ltd, Div China, Shanghai 200090, Peoples R China
基金
中国国家自然科学基金;
关键词
PROPANE DEHYDROGENATION; OXIDATIVE DEHYDROGENATION; CLUSTERS; REDUCTION; SITES; RICH;
D O I
10.1021/jacs.0c07792
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Nonoxidative dehydrogenation is promising for production of light olefins from shale gas, but current technology relies on precious Pt or toxic Cr catalysts and suffers from thermodynamically oriented coke formation. To solve these issues, the earth-abundant iron catalyst is employed, where Fe species are effectively modulated by siliceous zeolite, which is realized by the synthesis of Fe-containing MFI siliceous zeolite in the presence of ethylenediaminetetraacetic sodium (FeS-1-EDTA). Catalytic tests in ethane dehydrogenation show that this catalyst has a superior coke resistance in a 200 h run without any deactivation with extremely high activity and selectivity (e.g., 26.3% conversion and over 97.5% selectivity to ethene in at 873 K, close to the thermodynamic equilibrium limitation). Multiple characterizations demonstrate that the catalyst has uniformly and stably isolated Fe sites, which improves ethane dehydrogenation to facilitate the fast desorption of hydrogen and olefin products in the zeolite micropores and hinders the coke formation, as also identified by density functional calculations.
引用
收藏
页码:16429 / 16436
页数:8
相关论文
共 41 条
[1]   Structure and Reactivity of Zn-Modified ZSM-5 Zeolites: The Importance of Clustered Cationic Zn Complexes [J].
Almutairi, Sami M. T. ;
Mezari, Brahim ;
Magusin, Pieter C. M. M. ;
Pidko, Evgeny A. ;
Hensen, Emiel J. M. .
ACS CATALYSIS, 2012, 2 (01) :71-83
[2]   Significant Advances in C1 Catalysis: Highly Efficient Catalysts and Catalytic Reactions [J].
Bao, Jun ;
Yang, Guohui ;
Yoneyama, Yoshiharu ;
Tsubaki, Noritatsu .
ACS CATALYSIS, 2019, 9 (04) :3026-3053
[3]   Facile Dehydrogenation of Ethane on the IrO2(110) Surface [J].
Bian, Yingxue ;
Kim, Minkyu ;
Li, Tao ;
Asthagiri, Aravind ;
Weaver, Jason F. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2018, 140 (07) :2665-2672
[4]   Room Temperature Dehydrogenation of Ethane to Ethylene [J].
Cavaliere, Vincent N. ;
Crestani, Marco G. ;
Pinter, Balazs ;
Pink, Maren ;
Chen, Chun-Hsing ;
Baik, Mu-Hyun ;
Mindiola, Daniel J. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (28) :10700-10703
[5]   Modulating Lattice Oxygen in Dual-Functional Mo-V-O Mixed Oxides for Chemical Looping Oxidative Dehydrogenation [J].
Chen, Sai ;
Zeng, Liang ;
Mu, Rentao ;
Xiong, Chuanye ;
Zhao, Zhi-Jian ;
Zhao, Chengjie ;
Pei, Chunlei ;
Peng, Luming ;
Luo, Jun ;
Fan, Liang-Shih ;
Gong, Jinlong .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2019, 141 (47) :18653-18657
[6]   In Silico Design of Highly Selective Mo-V-Te-Nb-O Mixed Metal Oxide Catalysts for Ammoxidation and Oxidative Dehydrogenation of Propane and Ethane [J].
Cheng, Mu-Jeng ;
Goddard, William A., III .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (41) :13224-13227
[7]   A molten carbonate shell modified perovskite redox catalyst for anaerobic oxidative dehydrogenation of ethane [J].
Gao, Yunfei ;
Wang, Xijun ;
Liu, Junchen ;
Huang, Chuande ;
Zhao, Kun ;
Zhao, Zengli ;
Wang, Xiaodong ;
Li, Fanxing .
SCIENCE ADVANCES, 2020, 6 (17)
[8]   Carbon dioxide reduction in tandem with light-alkane dehydrogenation [J].
Gomez, Elaine ;
Yan, Binhang ;
Kattel, Shyam ;
Chen, Jingguang G. .
NATURE REVIEWS CHEMISTRY, 2019, 3 (11) :638-649
[9]   Selective oxidative dehydrogenation of propane to propene using boron nitride catalysts [J].
Grant, J. T. ;
Carrero, C. A. ;
Goeltl, F. ;
Venegas, J. ;
Mueller, P. ;
Burt, S. P. ;
Specht, S. E. ;
McDermott, W. P. ;
Chieregato, A. ;
Hermans, I. .
SCIENCE, 2016, 354 (6319) :1570-1573
[10]   Isolated FeII on Silica As a Selective Propane Dehydrogenation Catalyst [J].
Hu, Bo ;
Schweitzer, Neil M. ;
Zhang, Guanghui ;
Kraft, Steven J. ;
Childers, David J. ;
Lanci, Michael P. ;
Miller, Jeffrey T. ;
Hock, Adam S. .
ACS CATALYSIS, 2015, 5 (06) :3494-3503