Double phase transition of the Ising model in core-periphery networks

被引:7
作者
Chen, Hanshuang [1 ]
Zhang, Haifeng [2 ]
Shen, Chuansheng [3 ]
机构
[1] Anhui Univ, Sch Phys & Mat Sci, Hefei 230601, Anhui, Peoples R China
[2] Anhui Univ, Sch Math Sci, Hefei 230601, Anhui, Peoples R China
[3] Anqing Normal Univ, Dept Phys, Anqing 246011, Peoples R China
来源
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT | 2018年
基金
中国国家自然科学基金;
关键词
critical phenomena of socio-economic systems; network dynamics; COMPLEX NETWORKS; COMMUNITY STRUCTURE; GRAPHS;
D O I
10.1088/1742-5468/aac140
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We study the phase transition of the Ising model in networks with core-periphery structures. By Monte Carlo simulations, we show that prior to the order-disorder phase transition the system organizes into an inhomogeneous intermediate phase in which core nodes are much more ordered than peripheral nodes. Interestingly, the susceptibility shows double peaks at two distinct temperatures. We find that, if the connections between core and periphery increase linearly with network size, the first peak does not exhibit any size-dependent effect, and the second one diverges in the limit of infinite network size. Otherwise, if the connections between the core and periphery scale sublinearly with the network size, both peaks of the susceptibility diverge as power laws in the thermodynamic limit. This suggests the appearance of a double transition phenomenon in the Ising model for the latter case. Moreover, we develop a mean-field theory that agrees well with the simulations.
引用
收藏
页数:10
相关论文
共 45 条
[1]   Ferromagnetic phase transition in Barabasi-Albert networks [J].
Aleksiejuk, A ;
Holyst, JA ;
Stauffer, D .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2002, 310 (1-2) :260-266
[2]   Asymmetric percolation drives a double transition in sexual contact networks [J].
Allard, Antoine ;
Althouse, Benjamin M. ;
Scarpino, Samuel V. ;
Hebert-Dufresne, Laurent .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (34) :8969-8973
[3]  
[Anonymous], 2010, NETWORKS INTRO, DOI DOI 10.1093/ACPROF:OSO/9780199206650.001.0001
[4]   Synchronization reveals topological scales in complex networks [J].
Arenas, A ;
Díaz-Guilera, A ;
Pérez-Vicente, CJ .
PHYSICAL REVIEW LETTERS, 2006, 96 (11)
[5]   Synchronization in complex networks [J].
Arenas, Alex ;
Diaz-Guilera, Albert ;
Kurths, Jurgen ;
Moreno, Yamir ;
Zhou, Changsong .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2008, 469 (03) :93-153
[6]   Centrality metrics and localization in core-periphery networks [J].
Barucca, Paolo ;
Tantari, Daniele ;
Lillo, Fabrizio .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
[7]   Task-Based Core-Periphery Organization of Human Brain Dynamics [J].
Bassett, Danielle S. ;
Wymbs, Nicholas F. ;
Rombach, M. Puck ;
Porter, Mason A. ;
Mucha, Peter J. ;
Grafton, Scott T. .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
[8]   Mean field solution of the Ising model on a Barabasi-Albert network [J].
Bianconi, G .
PHYSICS LETTERS A, 2002, 303 (2-3) :166-168
[9]   Complex networks: Structure and dynamics [J].
Boccaletti, S. ;
Latora, V. ;
Moreno, Y. ;
Chavez, M. ;
Hwang, D. -U. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2006, 424 (4-5) :175-308
[10]   Explosive transitions in complex networks' structure and dynamics: Percolation and synchronization [J].
Boccaletti, S. ;
Almendral, J. A. ;
Guan, S. ;
Leyva, I. ;
Liu, Z. ;
Sendina-Nadal, I. ;
Wang, Z. ;
Zou, Y. .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2016, 660 :1-94