ERAF: A R package for regression and forecasting

被引:1
作者
Filippone, M. [1 ]
Masulli, F. [1 ]
Rovetta, S. [1 ]
机构
[1] INFM, Ist Nazl Fis Mat, Genoa, Italy
来源
BIOLOGICAL AND ARTIFICIAL INTELLIGENCE ENVIRONMENTS | 2005年
关键词
R package; statistical computing; time series; Bagging; Adaboost; Takens-Mane theorem; mutual information; autocorrelation; false nearest neighbors;
D O I
10.1007/1-4020-3432-6_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We present a package for R language containing a set of tools for regression using ensembles of learning machines and for time series forecasting. The package contains implementations of Bagging and Adaboost for regression, and algorithms for computing mutual information, autocorrelation and false nearest neighbors.
引用
收藏
页码:165 / 173
页数:9
相关论文
共 20 条
[1]  
Abarbanel H., 1996, ANAL OBSERVED CHAOTI
[2]  
BECKER RA, 1984, DESIGN S SYSTEM DATA, V27, P486
[3]   Random forests [J].
Breiman, L .
MACHINE LEARNING, 2001, 45 (01) :5-32
[4]   Training ν-support vector classifiers:: Theory and algorithms [J].
Chang, CC ;
Lin, CJ .
NEURAL COMPUTATION, 2001, 13 (09) :2119-2147
[5]   Training ν-support vector regression:: Theory and algorithms [J].
Chang, CC ;
Lin, CJ .
NEURAL COMPUTATION, 2002, 14 (08) :1959-1977
[6]  
CORTES C, 1995, MACH LEARN, V20, P273, DOI 10.1023/A:1022627411411
[7]  
Domingos P, 2000, SEVENTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-2001) / TWELFTH INNOVATIVE APPLICATIONS OF ARTIFICIAL INTELLIGENCE CONFERENCE (IAAI-2000), P564
[8]  
Freund Y, 1996, ICML
[9]   NEURAL NETWORKS AND THE BIAS VARIANCE DILEMMA [J].
GEMAN, S ;
BIENENSTOCK, E ;
DOURSAT, R .
NEURAL COMPUTATION, 1992, 4 (01) :1-58
[10]  
Ihaka R., 1996, J COMPUTATIONAL GRAP, V5, P299, DOI [10.1080/10618600.1996.10474713, 10.2307/1390807, DOI 10.1080/10618600.1996.10474713]