Combination of Peri-Tumoral and Intra-Tumoral Radiomic Features on Bi-Parametric MRI Accurately Stratifies Prostate Cancer Risk: A Multi-Site Study

被引:67
作者
Algohary, Ahmad [1 ]
Shiradkar, Rakesh [1 ]
Pahwa, Shivani [2 ]
Purysko, Andrei [3 ,4 ]
Verma, Sadhna [5 ]
Moses, Daniel [6 ]
Shnier, Ronald [6 ]
Haynes, Anne-Maree [7 ]
Delprado, Warick [8 ]
Thompson, James [9 ]
Tirumani, Sreeharsha [10 ]
Mahran, Amr [10 ]
Rastinehad, Ardeshir R. [11 ]
Ponsky, Lee [10 ]
Stricker, Phillip D. [6 ,12 ]
Madabhushi, Anant [1 ,13 ]
机构
[1] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
[2] Case Western Reserve Univ, Dept Radiol, Cleveland, OH 44106 USA
[3] Cleveland Clin, Sect Abdominal Imaging, Cleveland, OH 44195 USA
[4] Cleveland Clin, Nucl Radiol Dept, Cleveland, OH 44195 USA
[5] Univ Cincinnati, Coll Med, Dept Radiol, Cincinnati, OH 45221 USA
[6] Univ New South Wales, Dept Med, Sydney, NSW 2052, Australia
[7] Garvan Inst Med Res, Kinghorn Canc Ctr, Canc Div, Darlinghurst, NSW 2010, Australia
[8] Douglass Hanly Moir Pathol, Sydney, NSW 2000, Australia
[9] Garvan Inst Med Res, Sydney, NSW 2010, Australia
[10] Case Western Reserve Univ, Univ Hosp Cleveland Med Ctr, Inst Urol, Cleveland, OH 44106 USA
[11] Urol Lenox Hill & Northwell Hlth, New York, NY 10075 USA
[12] St Vincents Clin, Dept Urol, Sydney, NSW 2010, Australia
[13] Louis Stokes Cleveland VA Med Ctr, Cleveland, OH 44106 USA
基金
美国国家卫生研究院;
关键词
radiomics; prostate cancer; MRI; artificial intelligence; PIRADS; machine learning; peritumoral region; RESONANCE; ENHANCEMENT;
D O I
10.3390/cancers12082200
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background:Prostate cancer (PCa) influences its surrounding habitat, which tends to manifest as different phenotypic appearances on magnetic resonance imaging (MRI). This region surrounding the PCa lesion, or the peri-tumoral region, may encode useful information that can complement intra-tumoral information to enable better risk stratification.Purpose: To evaluate the role of peri-tumoral radiomic features on bi-parametric MRI (T2-weighted and Diffusion-weighted) to distinguish PCa risk categories as defined by D'Amico Risk Classification System.Materials and Methods: We studied a retrospective, HIPAA-compliant, 4-institution cohort of 231 PCa patients (n= 301 lesions) who underwent 3T multi-parametric MRI prior to biopsy. PCa regions of interest (ROIs) were delineated on MRI by experienced radiologists following which peri-tumoral ROIs were defined. Radiomic features were extracted within the intra- and peri-tumoral ROIs. Radiomic features differentiating low-risk from: (1) high-risk (L-vs.-H), and (2) (intermediate- and high-risk (L-vs.-I + H)) lesions were identified. Using a multi-institutional training cohort of 151 lesions (D1,N =116 patients), machine learning classifiers were trained using peri- and intra-tumoral features individually and in combination. The remaining 150 lesions (D2,N =115 patients) were used for independent hold-out validation and were evaluated using Receiver Operating Characteristic (ROC) analysis and compared with PI-RADS v2 scores.Results: Validation on D2 using peri-tumoral radiomics alone resulted in areas under the ROC curve (AUCs) of 0.84 and 0.73 for the L-vs.-H and L-vs.-I + H classifications, respectively. The best combination of intra- and peri-tumoral features resulted in AUCs of 0.87 and 0.75 for the L-vs.-H and L-vs.-I + H classifications, respectively. This combination improved the risk stratification results by 3-6% compared to intra-tumoral features alone. Our radiomics-based model resulted in a 53% accuracy in differentiating L-vs.-H compared to PI-RADS v2 (48%), on the validation set.Conclusion: Our findings suggest that peri-tumoral radiomic features derived from prostate bi-parametric MRI add independent predictive value to intra-tumoral radiomic features for PCa risk assessment.
引用
收藏
页码:1 / 14
页数:13
相关论文
共 38 条
[1]   Radiomic Features on MRI Enable Risk Categorization of Prostate Cancer Patients on Active Surveillance: Preliminary Findings [J].
Algohary, Ahmad ;
Viswanath, Satish ;
Shiradkar, Rakesh ;
Ghose, Soumya ;
Pahwa, Shivani ;
Moses, Daniel ;
Jambor, Ivan ;
Shnier, Ronald ;
Bohm, Maret ;
Haynes, Anne-Maree ;
Brenner, Phillip ;
Delprado, Warick ;
Thompson, James ;
Pulbrock, Marley ;
Purysko, Andrei S. ;
Verma, Sadhna ;
Ponsky, Lee ;
Stricker, Phillip ;
Madabhushi, Anant .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2018, 48 (03) :818-828
[2]   Perinodular and Intranodular Radiomic Features on Lung CT Images Distinguish Adenocarcinomas from Granulomas [J].
Beig, Niha ;
Khorrami, Mohammadhadi ;
Alilou, Mehdi ;
Prasanna, Prateek ;
Braman, Nathaniel ;
Orooji, Mahdi ;
Rakshit, Sagar ;
Bera, Kaustav ;
Rajiah, Prabhakar ;
Ginsberg, Jennifer ;
Donatelli, Christopher ;
Thawani, Rajat ;
Yang, Michael ;
Jacono, Frank ;
Tiwari, Pallavi ;
Velcheti, Vamsidhar ;
Gilkeson, Robert ;
Linden, Philip ;
Madabhushi, Anant .
RADIOLOGY, 2019, 290 (03) :783-792
[3]   Magnetic resonance imaging in prostate cancer Preface [J].
Bjurlin, Marc A. ;
Rosenkrantz, Andrew B. ;
Lepor, Herbert ;
Taneja, Samir S. .
TRANSLATIONAL ANDROLOGY AND UROLOGY, 2017, 6 (03) :343-344
[4]   Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer [J].
Braman, Nathaniel ;
Prasanna, Prateek ;
Whitney, Jon ;
Singh, Salendra ;
Beig, Niha ;
Etesami, Maryam ;
Bates, David D. B. ;
Gallagher, Katherine ;
Bloch, B. Nicolas ;
Vulchi, Manasa ;
Turk, Paulette ;
Bera, Kaustav ;
Abraham, Jame ;
Sikov, William M. ;
Somlo, George ;
Harris, Lyndsay N. ;
Gilmore, Hannah ;
Plecha, Donna ;
Varadan, Vinay ;
Madabhushi, Anant .
JAMA NETWORK OPEN, 2019, 2 (04)
[5]   Epithelium segmentation using deep learning in H&E-stained prostate specimens with immunohistochemistry as reference standard [J].
Bulten, Wouter ;
Bandi, Peter ;
Hoven, Jeffrey ;
van de Loo, Rob ;
Lotz, Johannes ;
Weiss, Nick ;
van der Laak, Jeroen ;
van Ginneken, Bram ;
Hulsbergen-van de Kaa, Christina ;
Litjens, Geert .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]   Delineation of Tumor Habitats based on Dynamic Contrast Enhanced MRI [J].
Chang, Yu-Cherng Channing ;
Ackerstaff, Ellen ;
Tschudi, Yohann ;
Jimenez, Bryan ;
Foltz, Warren ;
Fisher, Carl ;
Lilge, Lothar ;
Cho, HyungJoon ;
Carlin, Sean ;
Gillies, Robert J. ;
Balagurunathan, Yoganand ;
Yechieli, Raphael L. ;
Subhawong, Ty ;
Turkbey, Baris ;
Pollack, Alan ;
Stoyanova, Radka .
SCIENTIFIC REPORTS, 2017, 7
[7]   Prostate Cancer Differentiation and Aggressiveness: Assessment With a Radiomic-Based Model vs. PI-RADS v2 [J].
Chen, Tong ;
Li, Mengjuan ;
Gu, Yuefan ;
Zhang, Yueyue ;
Yang, Shuo ;
Wei, Chaogang ;
Wu, Jiangfen ;
Li, Xin ;
Zhao, Wenlu ;
Shen, Junkang .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2019, 49 (03) :875-884
[8]  
Cohen MS, 2000, HUM BRAIN MAPP, V10, P204, DOI 10.1002/1097-0193(200008)10:4<204::AID-HBM60>3.0.CO
[9]  
2-2
[10]   Biochemical outcome after radical prostatectomy, external beam radiation therapy, or interstitial radiation therapy for clinically localized prostate cancer [J].
D'Amico, AV ;
Whittington, R ;
Malkowicz, SB ;
Schultz, D ;
Blank, K ;
Broderick, GA ;
Tomaszewski, JE ;
Renshaw, AA ;
Kaplan, I ;
Beard, CJ ;
Wein, A .
JAMA-JOURNAL OF THE AMERICAN MEDICAL ASSOCIATION, 1998, 280 (11) :969-974