Entropy bounds for dendrimers

被引:50
作者
Chen, Zengqiang [1 ]
Dehmer, Matthias [2 ,3 ]
Emmert-Streib, Frank [4 ]
Shi, Yongtang [1 ,5 ,6 ]
机构
[1] Nankai Univ, Coll Comp & Control Engn, Tianjin 300071, Peoples R China
[2] UMIT, Inst Bioinformat & Translat Res, Hall In Tirol, Austria
[3] Univ Bundeswehr Munchen, Dept Comp Sci, D-85577 Neubiberg, Germany
[4] Queens Univ Belfast, Fac Med Hlth & Life Sci, Sch Med Dent & Biomed Sci, Ctr Canc Res & Cell Biol,Computat Biol & Machine, Belfast, Antrim, North Ireland
[5] Nankai Univ, Ctr Combinator, Tianjin 300071, Peoples R China
[6] Nankai Univ, LPMC TJKLC, Tianjin 300071, Peoples R China
基金
中国博士后科学基金; 美国国家科学基金会;
关键词
Information theory; Shannon's entropy; Graph entropy; Dendrimers; Extremal values; GRAPH ENTROPY; INFORMATION-CONTENT; COMPLEXITY; NETWORKS;
D O I
10.1016/j.amc.2014.05.105
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Many graph invariants have been used for the construction of entropy-based measures to characterize the structure of complex networks. When considering Shannon entropy-based graph measures, there has been very little work to find their extremal values. A reason for this might be the fact that Shannon's entropy represents a multivariate function and all probability values are not equal to zero when considering graph entropies. Dehmer and Kraus proved some extremal results for graph entropies which are based on information functionals and express some conjectures generated by numerical simulations to find extremal values of graph entropies. Dehmer and Kraus discussed the extremal values of entropies for dendrimers. In this paper, we continue to study the extremal values of graph entropy for dendrimers, which has most interesting applications in molecular structure networks, and also in the pharmaceutical and biomedical area. Among all dendrimers with n vertices, we obtain the extremal values of graph entropy based on different well-known information functionals. Numerical experiments verifies our results. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:462 / 472
页数:11
相关论文
共 47 条
[1]  
[Anonymous], KNOWLEDGE STRUCTURES, DOI DOI 10.1007/978-3-642-52064-8_5
[2]  
[Anonymous], GRAPHENTHEORIE
[3]   INFORMATION-THEORY, DISTANCE MATRIX, AND MOLECULAR BRANCHING [J].
BONCHEV, D ;
TRINAJSTIC, N .
JOURNAL OF CHEMICAL PHYSICS, 1977, 67 (10) :4517-4533
[4]  
Bonchev D., 1983, Information theoretic indices for characterization of chemical structures
[5]   Extremality of degree-based graph entropies [J].
Cao, Shujuan ;
Dehmer, Matthias ;
Shi, Yongtang .
INFORMATION SCIENCES, 2014, 278 :22-33
[6]   Characterization of complex networks: A survey of measurements [J].
Costa, L. Da F. ;
Rodrigues, F. A. ;
Travieso, G. ;
Boas, P. R. Villas .
ADVANCES IN PHYSICS, 2007, 56 (01) :167-242
[7]  
Cover T.M., 2006, ELEMENTS INFORM THEO, V2nd ed
[8]   MEASURABLE SOLUTION OF A FUNCTIONAL-EQUATION ARISING IN INFORMATION-THEORY [J].
DAROCZY, Z ;
JARAI, A .
ACTA MATHEMATICA ACADEMIAE SCIENTIARUM HUNGARICAE, 1979, 34 (1-2) :105-116
[9]  
Dehmer M., 2013, ADV NETWORK COMPLEXI
[10]   Information-theoretic concepts for the analysis of complex networks [J].
Dehmer, Matthias .
APPLIED ARTIFICIAL INTELLIGENCE, 2008, 22 (7-8) :684-706