Charge quantization conditions based on the Atiyah-Singer index theorem

被引:11
作者
Deguchi, Shinichi [1 ]
Kitsukawa, Kaoru
机构
[1] Nihon Univ, Coll Sci & Technol, Inst Quantum Sci, Tokyo 1018308, Japan
[2] Nihon Univ, Grad Sch Quantum Sci & Technol, Tokyo 1018308, Japan
来源
PROGRESS OF THEORETICAL PHYSICS | 2006年 / 115卷 / 06期
关键词
D O I
10.1143/PTP.115.1137
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Dirac's quantization condition, eg = n/2 (n is an element of Z), and Schwinger's quantization condition, eg = n (n is an element of Z), for an electric charge e and a magnetic charge g are derived by utilizing the Atiyah-Singer index theorem in two dimensions. The massless Dirac equation on a sphere with a magnetic-monopole background is solved in order to count the number of zero-modes of the Dirac operator.
引用
收藏
页码:1137 / 1149
页数:13
相关论文
共 28 条
[1]   Fermion states on the sphere S2 [J].
Abrikosov, AA .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 2002, 17 (6-7) :885-889
[2]  
ABRIKOSOV AA, HEPTH0212134
[3]   HEAT EQUATION AND INDEX THEOREM [J].
ATIYAH, M ;
BOTT, R ;
PATODI, VK .
INVENTIONES MATHEMATICAE, 1973, 19 (04) :279-330
[4]  
ATIYAH MF, 1968, ANN MATH, V87, P484, DOI 10.2307/1970715
[5]  
ATIYAH MF, 1968, ANN MATH, V87, P546, DOI 10.2307/1970717
[6]  
Avramidi IG, 2000, HEAT KERNEL QUANTUM, V64
[7]  
Bertlmann R., 1996, ANOMALIES QUANTUM FI
[8]   SYMMETRIC SPACE SCALAR FIELD-THEORY [J].
BOULWARE, DG ;
BROWN, LS .
ANNALS OF PHYSICS, 1982, 138 (02) :392-433
[9]   THE THEORY OF MAGNETIC POLES [J].
DIRAC, PAM .
PHYSICAL REVIEW, 1948, 74 (07) :817-830