Image Thresholding Using TRIBES, a Parameter-Free Particle Swarm Optimization Algorithm
被引:3
作者:
Cooren, Yann
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 12, LiSSi, EA 3956, F-94010 Creteil, FranceUniv Paris 12, LiSSi, EA 3956, F-94010 Creteil, France
Cooren, Yann
[1
]
Nakib, Amir
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 12, LiSSi, EA 3956, F-94010 Creteil, FranceUniv Paris 12, LiSSi, EA 3956, F-94010 Creteil, France
Nakib, Amir
[1
]
Siarry, Patrick
论文数: 0引用数: 0
h-index: 0
机构:
Univ Paris 12, LiSSi, EA 3956, F-94010 Creteil, FranceUniv Paris 12, LiSSi, EA 3956, F-94010 Creteil, France
Siarry, Patrick
[1
]
机构:
[1] Univ Paris 12, LiSSi, EA 3956, F-94010 Creteil, France
来源:
LEARNING AND INTELLIGENT OPTIMIZATION
|
2008年
/
5313卷
关键词:
D O I:
10.1007/978-3-540-92695-5_7
中图分类号:
TP18 [人工智能理论];
学科分类号:
081104 ;
0812 ;
0835 ;
1405 ;
摘要:
Finding the optimal threshold(s) for an image with a multimodal histogram is described in classical literature as a problem of fitting a sum of Gaussians to the histogram. The fitting problem has been shown experimentally to be a nonlinear minimization problem with local minima. In this paper, we propose to reduce the complexity of the method, by using a parameter-free particle swarm optimization algorithm, called TRIBES which avoids the initialization problem. It was proved efficient to solve nonlinear and continuous optimization problems. This algorithm is used as a "black-box" system and does not need any fitting, thus inducing time gain.