A Central Limit Theorem for Integrals with Respect to Random Measures

被引:1
作者
Demichev, V. P. [1 ]
机构
[1] Moscow MV Lomonosov State Univ, Moscow, Russia
基金
俄罗斯基础研究基金会;
关键词
central limit theorem; integral with respect to a stationary random measure; Burgers equation with random initial data; MULTIDIMENSIONAL BURGERS-EQUATION; RANDOM-FIELDS; TURBULENCE; CONVERGENCE;
D O I
10.1134/S0001434614010209
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Integrals with respect to stationary random measures are considered. A central limit theorem for such integrals is proved. The results are applied to obtain a functional central limit theorem for transformed solutions of the Burgers equation with random initial data.
引用
收藏
页码:191 / 201
页数:11
相关论文
共 25 条
[1]  
Bakhtin Yu. Yu., 2000, VESTN MOSK U MAT M+, V55, p[8, 7]
[2]   A functional central limit theorem for transformed solutions of the multidimensional Burgers equation with random initial data [J].
Bakhtin, YY .
THEORY OF PROBABILITY AND ITS APPLICATIONS, 2001, 46 (03) :387-405
[3]   Burgers' turbulence problem with linear or quadratic external potential [J].
Barndorff-Nielsen, OE ;
Leonenko, NN .
JOURNAL OF APPLIED PROBABILITY, 2005, 42 (02) :550-565
[4]   CONVERGENCE CRITERIA FOR MULTIPARAMETER STOCHASTIC PROCESSES AND SOME APPLICATIONS [J].
BICKEL, PJ ;
WICHURA, MJ .
ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (05) :1656-&
[5]   Normal approximation for quasi-associated random fields [J].
Bulinski, A ;
Suquet, C .
STATISTICS & PROBABILITY LETTERS, 2001, 54 (02) :215-226
[6]  
Bulinski A., 1998, FUNDAM PRIKL MAT, P479
[7]   Central limit theorems for the excursion set volumes of weakly dependent random fields [J].
Bulinski, Alexander ;
Spodarev, Evgeny ;
Timmermann, Florian .
BERNOULLI, 2012, 18 (01) :100-118
[8]   Central Limit Theorem for Random Fields and Applications [J].
Bulinski, Alexander .
ADVANCES IN DATA ANALYSIS, 2010, :141-150
[9]  
Bulinskii A. V., 2008, LIMIT THEOREMS ASS R
[10]  
Bulinskii A. V., 1992, P 6 USSR JAP S, P32