Irreducible Lie-Yamaguti algebras

被引:25
|
作者
Benito, Pilar [3 ,4 ]
Elduque, Alberto [1 ,2 ]
Martin-Herce, Fabign [3 ,4 ]
机构
[1] Univ Zaragoza, Dept Matemat, E-50009 Zaragoza, Spain
[2] Univ Zaragoza, Inst Univ Matemat & Aplicac, E-50009 Zaragoza, Spain
[3] Univ La Rioja, Dept Matemat & Computac, Logrono 26004, Spain
[4] Univ La Rioja, Ctr Invest Informat Estadist & Matemat CIEMUR, Logrono 26004, Spain
关键词
REDUCTIVE HOMOGENEOUS SPACES; ANTI-COMMUTATIVE ALGEBRAS; TRIPLE-SYSTEMS;
D O I
10.1016/j.jpaa.2008.09.003
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Lie-Yamaguti algebras (or generalized Lie triple systems) are binary-ternary algebras intimately related to reductive homogeneous spaces, The Lie-Yamaguti algebras which are irreducible as modules over their Lie inner derivation algebra are the algebraic counterpart of the isotropy irreducible homogeneous spaces. These systems will be shown to split into three disjoint types: adjoint type, non-simple type and generic type. The systems of the first two types will be classified and most of them will be shown to be related to a Generalized Tits Construction of Lie algebras. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:795 / 808
页数:14
相关论文
共 11 条
  • [1] Irreducible Lie-Yamaguti algebras of generic type
    Benito, Pilar
    Elduque, Alberto
    Martin-Herce, Fabian
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (02) : 108 - 130
  • [2] On the Deformation of Lie-Yamaguti Algebras
    Lin, Jie
    Chen, Liang Yun
    Ma, Yao
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2015, 31 (06) : 938 - 946
  • [3] Quasi-derivations of Lie-Yamaguti algebras
    Lin, Jie
    Chen, Liangyun
    JOURNAL OF ALGEBRA AND ITS APPLICATIONS, 2023, 22 (05)
  • [4] A polynomial identity for the bilinear operation in Lie-Yamaguti algebras
    Bremner, Murray R.
    LINEAR & MULTILINEAR ALGEBRA, 2014, 62 (12) : 1671 - 1682
  • [5] Automorphisms of extensions of Lie-Yamaguti algebras and inducibility problem
    Goswami, Saikat
    Mishra, Satyendra Kumar
    Mukherjee, Goutam
    JOURNAL OF ALGEBRA, 2024, 641 : 268 - 306
  • [6] Invariant nonassociative algebra structures on irreducible representations of simple Lie algebras
    Bremner, M
    Hentzel, I
    EXPERIMENTAL MATHEMATICS, 2004, 13 (02) : 231 - 256
  • [7] METRIC n-LIE ALGEBRAS
    Jin, Yidong
    Liu, Wenli
    Zhang, Zhixue
    COMMUNICATIONS IN ALGEBRA, 2011, 39 (02) : 572 - 583
  • [8] Restricted Lie algebras all whose elements are semisimple
    Chen, Liangyun
    Xu, Xiaoning
    Zhang, Yongzheng
    FRONTIERS OF MATHEMATICS IN CHINA, 2011, 6 (01) : 61 - 70
  • [9] Alternating triple systems with simple Lie algebras of derivations
    Bremner, MR
    Hentzel, IR
    Non-Associative Algebra and Its Applications, 2006, 246 : 55 - 82
  • [10] SYMMETRY OF LIE ALGEBRAS ASSOCIATED WITH (ε, δ)-FREUDENTHAL-KANTOR TRIPLE SYSTEMS
    Kamiya, Noriaki
    Okubo, Susumu
    PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2016, 59 (01) : 169 - 192