From laminar plumes to organized flows: the onset of large-scale circulation in turbulent thermal convection

被引:204
作者
Xi, HD [1 ]
Lam, S [1 ]
Xia, KQ [1 ]
机构
[1] Chinese Univ Hong Kong, Dept Phys, Shatin, Hong Kong, Peoples R China
关键词
D O I
10.1017/S0022112004008079
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We report an experimental study on the onset of the large-scale coherent mean flow in Rayleigh-Benard turbulent convection. Shadowgraph and particle image velocimetry techniques are used to visualize the motion of thermal plumes and measure the velocity of the plumes and of the 'background' flow field, as the fluid motion evolves from quiescent to steady state. The experiment reveals the dynamical origin of the initial horizontal motion required by the large-scale flow: the fluid entrainment caused by the plume's vertical motion generates vortices surrounding the plume itself. These vortices in turn generate the initial horizontal motion of the flow field. Two types of interactions have been identified: (i) direct plume-vortex interaction; and (ii) plume-plume interaction via vortices. These interactions and the interaction and merging of the vortices from neighbouring plumes lead to groupings and/or merging of plumes, which in turn generate vortices of even larger scale. As a result of these interactions, the convective flow evolves into a coherent rotatory motion consisting of mainly the plumes themselves and spanning the whole convection box. This study clearly demonstrates that it is the thermal plumes that initiate the horizontal large-scale flow across the top and bottom conducting plates.
引用
收藏
页码:47 / 56
页数:10
相关论文
共 31 条
[1]   High Rayleigh number turbulent convection in a gas near the gas-liquid critical point [J].
Ashkenazi, S ;
Steinberg, V .
PHYSICAL REVIEW LETTERS, 1999, 83 (18) :3641-3644
[2]   THE EFFECT OF WALL CONDUCTION ON THE STABILITY OF A FLUID IN A RIGHT CIRCULAR-CYLINDER HEATED FROM BELOW [J].
BUELL, JC ;
CATTON, I .
JOURNAL OF HEAT TRANSFER-TRANSACTIONS OF THE ASME, 1983, 105 (02) :255-260
[3]   SCALING OF HARD THERMAL TURBULENCE IN RAYLEIGH-BENARD CONVECTION [J].
CASTAING, B ;
GUNARATNE, G ;
HESLOT, F ;
KADANOFF, L ;
LIBCHABER, A ;
THOMAE, S ;
WU, XZ ;
ZALESKI, S ;
ZANETTI, G .
JOURNAL OF FLUID MECHANICS, 1989, 204 :1-30
[4]   THERMOCONVECTIVE INSTABILITY IN A BOUNDED CYLINDRICAL FLUID LAYER [J].
CHARLSON, GS ;
SANI, RL .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 1971, 14 (12) :2157-&
[5]   Turbulent Rayleigh-Benard convection in gaseous and liquid He [J].
Chavanne, X ;
Chillà, F ;
Chabaud, B ;
Castaing, B ;
Hébral, B .
PHYSICS OF FLUIDS, 2001, 13 (05) :1300-1320
[6]   Strongly turbulent Rayleigh-Benard convection in mercury: Comparison with results at moderate Prandtl number [J].
Cioni, S ;
Ciliberto, S ;
Sommeria, J .
JOURNAL OF FLUID MECHANICS, 1997, 335 :111-140
[7]   Scaling in thermal convection: a unifying theory [J].
Grossmann, S ;
Lohse, D .
JOURNAL OF FLUID MECHANICS, 2000, 407 :27-56
[8]   Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection [J].
Grossmann, S ;
Lohse, D .
PHYSICAL REVIEW E, 2002, 66 (01) :1-016305
[9]   On geometry effects in Rayleigh-Benard convection [J].
Grossmann, S ;
Lohse, D .
JOURNAL OF FLUID MECHANICS, 2003, 486 :105-114
[10]   TRANSITIONS TO TURBULENCE IN HELIUM GAS [J].
HESLOT, F ;
CASTAING, B ;
LIBCHABER, A .
PHYSICAL REVIEW A, 1987, 36 (12) :5870-5873