Analytic torsion and Ruelle zeta functions for hyperbolic manifolds with cusps

被引:14
作者
Park, Jinsung [1 ]
机构
[1] Korea Inst Adv Study, Sch Math, Seoul 130722, South Korea
关键词
Analytic torsion; Ruelle zeta function; Selberg trace formula; SEMISIMPLE LIE-GROUPS; CLOSED GEODESICS; DISCRETE SERIES; MULTIPLICITIES; CONJECTURE;
D O I
10.1016/j.jfa.2009.06.012
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we derive a relationship of the leading coefficient of the Laurent expansion of the Ruelle zeta function at s = 0 and the analytic torsion for hyperbolic manifolds with cusps. Here, the analytic torsion is defined by a certain regularized trace following Melrose [R.B. Melrose, The Atiyah-Patodi-Singer Index Theorem, Res. Notes Math., vol. 4, A.K. Peters, Ltd., Wellesley, MA, 1993]. This extends the result of Fried, which was proved for the compact case in [D. Fried, Analytic torsion and closed geodesics on hyperbolic manifolds, Invent. Math. 84 (3) (1986) 523-540], to a noncompact case. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:1713 / 1758
页数:46
相关论文
共 29 条
[1]  
[Anonymous], 2001, REPRESENTATION THEOR
[2]   GEOMETRIC CONSTRUCTION OF DISCRETE SERIES FOR SEMISIMPLE LIE GROUPS [J].
ATIYAH, M ;
SCHMID, W .
INVENTIONES MATHEMATICAE, 1977, 42 :1-62
[3]   L2-INDEX AND THE SELBERG TRACE FORMULA [J].
BARBASCH, D ;
MOSCOVICI, H .
JOURNAL OF FUNCTIONAL ANALYSIS, 1983, 53 (02) :151-201
[4]  
DEGEORGE DL, 1982, J FUNCT ANAL, V48, P81
[5]   The expressions of the Harish-Chandra C-functions of semisimple Lie groups Spin(n, 1), SU(n, 1) [J].
Eguchi, M ;
Koizumi, S ;
Mamiuda, M .
JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 1999, 51 (04) :955-985
[6]   ANALYTIC-TORSION AND CLOSED GEODESICS ON HYPERBOLIC MANIFOLDS [J].
FRIED, D .
INVENTIONES MATHEMATICAE, 1986, 84 (03) :523-540
[7]   TORSION AND CLOSED GEODESICS ON COMPLEX HYPERBOLIC MANIFOLDS [J].
FRIED, D .
INVENTIONES MATHEMATICAE, 1988, 91 (01) :31-51
[8]  
FRIED D., 1986, Contemp. Math., V53, P141, DOI [10.1090/conm/053/853556, DOI 10.1090/CONM/053/853556]
[9]  
GANGOLLI R, 1980, NAGOYA MATH J, V78, P1
[10]  
GON Y, ZETA FUNCTIONS RUELL