Solid-State Plastic Crystal Electrolytes: Effective Protection Interlayers for Sulfide-Based All-Solid-State Lithium Metal Batteries

被引:214
|
作者
Wang, Changhong [1 ]
Adair, Keegan R. [1 ]
Liang, Jianwen [1 ]
Li, Xiaona [1 ]
Sun, Yipeng [1 ]
Li, Xia [1 ]
Wang, Jiwei [1 ]
Sun, Qian [1 ]
Zhao, Feipeng [1 ]
Lin, Xiaoting [1 ]
Li, Ruying [1 ]
Huang, Huan [2 ]
Zhang, Li [3 ]
Yang, Rong [3 ]
Lu, Shigang [3 ]
Sun, Xueliang [1 ]
机构
[1] Univ Western Ontario, Dept Mech & Mat Engn, 1151 Richmond St, London, ON N6A 3K7, Canada
[2] Glabat Solid State Battery Inc, 700 Collip Circle, London, ON N6G 4X8, Canada
[3] China Automot Battery Res Inst Co Ltd, 5th Floor,43 Min Bldg,North Sanhuan Middle Rd, Beijing 100088, Peoples R China
基金
加拿大创新基金会; 加拿大自然科学与工程研究理事会;
关键词
all-solid-state lithium metal batteries; Li metal; plastic crystal electrolytes; sulfide electrolytes; SUPERIONIC CONDUCTORS; LI METAL; PERFORMANCE; POLYMER; INTERFACE; LICOO2; ANODE; SUCCINONITRILE; LI10GEP2S12;
D O I
10.1002/adfm.201900392
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
All-solid-state lithium metal batteries (ASSLMBs) have attracted significant attention due to their superior safety and high energy density. However, little success has been made in adopting Li metal anodes in sulfide electrolyte (SE)-based ASSLMBs. The main challenges are the remarkable interfacial reactions and Li dendrite formation between Li metal and SEs. In this work, a solid-state plastic crystal electrolyte (PCE) is engineered as an interlayer in SE-based ASSLMBs. It is demonstrated that the PCE interlayer can prevent the interfacial reactions and lithium dendrite formation between SEs and Li metal. As a result, ASSLMBs with LiFePO4 exhibit a high initial capacity of 148 mAh g(-1) at 0.1 C and 131 mAh g(-1) at 0.5 C (1 C = 170 mA g(-1)), which remains at 122 mAh g(-1) after 120 cycles at 0.5 C. All-solid-state Li-S batteries based on the polyacrylonitrile-sulfur composite are also demonstrated, showing an initial capacity of 1682 mAh g(-1). The second discharge capacity of 890 mAh g(-1) keeps at 775 mAh g(-1) after 100 cycles. This work provides a new avenue to address the interfacial challenges between Li metal and SEs, enabling the successful adoption of Li metal in SE-based ASSLMBs with high energy density.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Glassy solid-state electrolytes for all-solid-state batteries
    Wheaton, Jacob
    Olson, Madison
    Torres, Victor M., III
    Martin, Steve W.
    AMERICAN CERAMIC SOCIETY BULLETIN, 2023, 102 (01): : 24 - 31
  • [22] Towards practical all-solid-state batteries: structural engineering innovations for sulfide-based solid electrolytes
    Roh, Jihun
    Do, Namgyu
    Lee, Hyungjin
    Lee, Sangki
    Pyun, Jangwook
    Hong, Seung-Tae
    Chae, Munseok S.
    ENERGY MATERIALS, 2025, 5 (02):
  • [23] Sulfide-based composite solid electrolyte films for all-solid-state batteries
    Li, Shenghao
    Yang, Zhihua
    Wang, Shu-Bo
    Ye, Mingqiang
    He, Hongcai
    Zhang, Xin
    Nan, Ce-Wen
    Wang, Shuo
    COMMUNICATIONS MATERIALS, 2024, 5 (01)
  • [24] Sulfide-based composite solid electrolyte films for all-solid-state batteries
    Shenghao Li
    Zhihua Yang
    Shu-Bo Wang
    Mingqiang Ye
    Hongcai He
    Xin Zhang
    Ce-Wen Nan
    Shuo Wang
    Communications Materials, 5
  • [25] Fe-P-S electrodes for all-solid-state lithium secondary batteries using sulfide-based solid electrolytes
    Fujii, Yuta
    Kobayashi, Misaki
    Miura, Akira
    Rosero-Navarro, Nataly Carolina
    Li, Minchan
    Sun, Jianguo
    Kotobuki, Masashi
    Lu, Li
    Tadanaga, Kiyoharu
    JOURNAL OF POWER SOURCES, 2020, 449
  • [26] Interface engineering for composite cathodes in sulfide-based all-solid-state lithium batteries
    Yu Li
    Dechao Zhang
    Xijun Xu
    Zhuosen Wang
    Zhengbo Liu
    Jiadong Shen
    Jun Liu
    Min Zhu
    Journal of Energy Chemistry, 2021, 60 (09) : 32 - 60
  • [27] All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes
    Wu, Jinghua
    Shen, Lin
    Zhang, Zhihua
    Liu, Gaozhan
    Wang, Zhiyan
    Zhou, Dong
    Wan, Hongli
    Xu, Xiaoxiong
    Yao, Xiayin
    ELECTROCHEMICAL ENERGY REVIEWS, 2021, 4 (01) : 101 - 135
  • [28] All-Solid-State Lithium Batteries with Sulfide Electrolytes and Oxide Cathodes
    Jinghua Wu
    Lin Shen
    Zhihua Zhang
    Gaozhan Liu
    Zhiyan Wang
    Dong Zhou
    Hongli Wan
    Xiaoxiong Xu
    Xiayin Yao
    Electrochemical Energy Reviews, 2021, 4 : 101 - 135
  • [29] Recent progress of sulfide electrolytes for all-solid-state lithium batteries
    Su, Han
    Jiang, Zhao
    Liu, Yu
    Li, Jingru
    Gu, Changdong
    Wang, Xiuli
    Xia, Xinhui
    Tu, Jiangping
    ENERGY MATERIALS, 2022, 2 (01):
  • [30] Interface engineering of sulfide electrolytes for all-solid-state lithium batteries
    Xu, Ruochen
    Han, Fudong
    Ji, Xiao
    Fan, Xiulin
    Tu, Jiangping
    Wang, Chunsheng
    NANO ENERGY, 2018, 53 : 958 - 966