Human Activity Recognition Using an Ensemble Learning Algorithm with Smartphone Sensor Data

被引:37
|
作者
Tan, Tan-Hsu [1 ]
Wu, Jie-Ying [1 ]
Liu, Shing-Hong [2 ]
Gochoo, Munkhjargal [3 ]
机构
[1] Natl Taipei Univ Technol, Dept Elect Engn, Taipei 10608, Taiwan
[2] Chaoyang Univ Technol, Dept Comp Sci & Informat Engn, Taichung 413310, Taiwan
[3] United Arab Emirates Univ, Dept Comp Sci & Software Engn, Al Ain 15551, U Arab Emirates
关键词
ensemble learning algorithm; human activity recognition; gated recurrent units; convolutional neural network; PHYSICAL-ACTIVITY; NEURAL-NETWORK;
D O I
10.3390/electronics11030322
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Human activity recognition (HAR) can monitor persons at risk of COVID-19 virus infection to manage their activity status. Currently, many people are isolated at home or quarantined in some specified places due to the spread of COVID-19 virus all over the world. This situation raises the requirement of using the HAR to observe physical activity levels to assess physical and mental health. This study proposes an ensemble learning algorithm (ELA) to perform activity recognition using the signals recorded by smartphone sensors. The proposed ELA combines a gated recurrent unit (GRU), a convolutional neural network (CNN) stacked on the GRU and a deep neural network (DNN). The input samples of DNN were an extra feature vector consisting of 561 time-domain and frequency-domain parameters. The full connected DNN was used to fuse three models for the activity classification. The experimental results show that the precision, recall, F1-score and accuracy achieved by the ELA are 96.8%, 96.8%, 96.8%, and 96.7%, respectively, which are superior to the existing schemes.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Unsupervised learning for human activity recognition using smartphone sensors
    Kwon, Yongjin
    Kang, Kyuchang
    Bae, Changseok
    EXPERT SYSTEMS WITH APPLICATIONS, 2014, 41 (14) : 6067 - 6074
  • [2] Human Activity Recognition from Body Sensor Data using Deep Learning
    Hassan, Mohammad Mehedi
    Huda, Shamsul
    Uddin, Md Zia
    Almogren, Ahmad
    Alrubaian, Majed
    JOURNAL OF MEDICAL SYSTEMS, 2018, 42 (06)
  • [3] A Novel Ensemble ELM for Human Activity Recognition Using Smartphone Sensors
    Chen, Zhenghua
    Jiang, Chaoyang
    Xie, Lihua
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2019, 15 (05) : 2691 - 2699
  • [4] Robust Recognition of Human Activities using Smartphone Sensor Data
    Hussein, Ramy
    Lin, Jianzhe
    Madden, Kenneth
    Wang, Z. Jane
    2017 INTERNATIONAL CONFERENCE ON THE FRONTIERS AND ADVANCES IN DATA SCIENCE (FADS), 2017, : 107 - 111
  • [5] Broad learning system for human activity recognition using sensor data
    Yang, Ai-Qiang
    Yu, Xing-Hong
    Su, Ting-Li
    Jin, Xue-Bo
    Kong, Jian-Lei
    INTERNATIONAL JOURNAL OF COMPUTER APPLICATIONS IN TECHNOLOGY, 2019, 61 (04) : 259 - 264
  • [6] Deep Ensemble Learning for Human Activity Recognition Using Smart hone
    Zhu, Ran
    Xiao, Zhuoling
    Cheng, Mo
    Zhou, Liang
    Yan, Bo
    Lin, Shuisheng
    Wen, HongKai
    2018 IEEE 23RD INTERNATIONAL CONFERENCE ON DIGITAL SIGNAL PROCESSING (DSP), 2018,
  • [7] Human activity recognition with smartphone sensors using deep learning neural networks
    Ronao, Charissa Ann
    Cho, Sung-Bae
    EXPERT SYSTEMS WITH APPLICATIONS, 2016, 59 : 235 - 244
  • [8] New machine learning approaches for real-life human activity recognition using smartphone sensor-based data
    Garcia-Gonzalez, Daniel
    Rivero, Daniel
    Fernandez-Blanco, Enrique
    Luaces, Miguel R.
    KNOWLEDGE-BASED SYSTEMS, 2023, 262
  • [9] Human activity recognition with AutoML using smartphone radio data
    Balabka, Dmitrijs
    Shkliarenko, Denys
    UBICOMP/ISWC '21 ADJUNCT: PROCEEDINGS OF THE 2021 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING AND PROCEEDINGS OF THE 2021 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTERS, 2021, : 346 - 352
  • [10] Human Activity Recognition Using Smartphone Sensor Based on Selective Classifiers
    Khatun, Mst Alema
    Abu Yousuf, Mohammad
    2020 2ND INTERNATIONAL CONFERENCE ON SUSTAINABLE TECHNOLOGIES FOR INDUSTRY 4.0 (STI), 2020,