Exploring structure-property relationships in magnesium dissolution modulators

被引:20
|
作者
Wurger, Tim [1 ,2 ]
Mei, Di [1 ]
Vaghefinazari, Bahram [1 ]
Winkler, David A. [3 ,4 ,5 ,6 ]
Lamaka, Sviatlana V. [1 ]
Zheludkevich, Mikhail L. [1 ,7 ]
Meissner, Robert H. [1 ,2 ]
Feiler, Christian [1 ]
机构
[1] Helmholtz Zentrum Geesthacht, Inst Mat Res, Magnesium Innovat Ctr MagIC, Geesthacht, Germany
[2] Hamburg Univ Technol, Inst Polymers & Composites, Hamburg, Germany
[3] La Trobe Univ, La Trobe Inst Mol Sci, Kingsbury Dr, Bundoora, Vic, Australia
[4] Monash Univ, Monash Inst Pharmaceut Sci, Parkville, Vic, Australia
[5] CSIRO Data61, Pullenvale, Australia
[6] Univ Nottingham, Sch Pharm, Nottingham NG7 2QL, England
[7] Univ Kiel, Fac Engn, Inst Mat Sci, Kiel, Germany
关键词
CORROSION-INHIBITORS; SMALL MOLECULES; MG; ALLOYS;
D O I
10.1038/s41529-020-00148-z
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Small organic molecules that modulate the degradation behavior of Mg constitute benign and useful materials to modify the service environment of light metal materials for specific applications. The vast chemical space of potentially effective compounds can be explored by machine learning-based quantitative structure-property relationship models, accelerating the discovery of potent dissolution modulators. Here, we demonstrate how unsupervised clustering of a large number of potential Mg dissolution modulators by structural similarities and sketch-maps can predict their experimental performance using a kernel ridge regression model. We compare the prediction accuracy of this approach to that of a prior artificial neural networks study. We confirm the robustness of our data-driven model by blind prediction of the dissolution modulating performance of 10 untested compounds. Finally, a workflow is presented that facilitates the automated discovery of chemicals with desired dissolution modulating properties from a commercial database. We subsequently prove this concept by blind validation of five chemicals.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Exploring structure-property relationships in magnesium dissolution modulators
    Tim Würger
    Di Mei
    Bahram Vaghefinazari
    David A. Winkler
    Sviatlana V. Lamaka
    Mikhail L. Zheludkevich
    Robert H. Meißner
    Christian Feiler
    npj Materials Degradation, 5
  • [2] STRUCTURE-PROPERTY RELATIONSHIPS FOR DIE-CAST MAGNESIUM ALLOYS
    Weiler, J. P.
    Wood, J. T.
    Jekl, J.
    Berkmortel, R.
    MAGNESIUM TECHNOLOGY 2010, 2010, : 413 - +
  • [3] Structure-Property Relationships of Dibenzylidenecyclohexanones
    Fomina, Marina, V
    Vatsadze, Sergey Z.
    Freidzon, Alexandra Ya
    Kuz'mina, Lyudmila G.
    Moiseeva, Anna A.
    Starostin, Roman O.
    Nuriev, Vyacheslav N.
    Gromov, Sergey P.
    ACS OMEGA, 2022, 7 (12): : 10087 - 10099
  • [4] STRUCTURE-PROPERTY RELATIONSHIPS IN A POLYMER
    ANDREWS, EH
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION IN ENGLISH, 1974, 13 (02): : 113 - 121
  • [5] Structure-property relationships of polyphosphazenes
    Thursby, Evan W.
    Allcock, Harry R.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [6] Exploration of structure-property relationships
    Schreuer, J
    CHIMIA, 2001, 55 (06) : 562 - 569
  • [7] ORGANOTINPOLYIMIDES - STRUCTURE-PROPERTY RELATIONSHIPS
    PATHAK, CP
    SAMANT, S
    MURTY, MVR
    BABU, GN
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1982, 183 (MAR): : 32 - ORPL
  • [8] Structure-Property Relationships for Methylsilsesquioxanes
    Ro, Hyun Wook
    Park, Eun Su
    Soles, Christopher L.
    Yoon, Do Y.
    CHEMISTRY OF MATERIALS, 2010, 22 (04) : 1330 - 1339
  • [9] On the Significance of Structure-Property Relationships
    Wojnar, Leszek
    TEROTECHNOLOGY, 2017, 2018, 5 : 41 - 46
  • [10] STRUCTURE-PROPERTY RELATIONSHIPS IN COPOLYESTERS
    VARMA, DS
    NEGI, YS
    VEENA
    VARMA, IK
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1983, 185 (MAR): : 135 - POLY