Investigation of MnO2 and Ordered Mesoporous Carbon Composites as Electrocatalysts for Li-O2 Battery Applications

被引:14
作者
Chin, Chih-Chun [1 ]
Yang, Hong-Kai [1 ]
Chen, Jenn-Shing [1 ]
机构
[1] Natl Univ Kaohsiung, Dept Appl Chem, Kaohsiung 811, Taiwan
关键词
MnO2; C; cathode; lithium-oxygen battery; rotating ring-disk electrode; OXYGEN REDUCTION; POROUS GRAPHENE; AIR ELECTRODE; LONG-LIFE; CATALYST; CATHODE; CAPACITY; STABILITY; DESIGN; KEY;
D O I
10.3390/nano6010021
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The electrocatalytic activities of the MnO2/C composites are examined in Li- O-2 cells as the cathode catalysts. Hierarchically mesoporous carbon- supported manganese oxide ( MnO2/ C) composites are prepared using a combination of soft template and hydrothermal methods. The composites are characterized by X- ray powder diffraction, scanning electron microscopy, transmission electron microscopy, small angle X- ray scattering, The Brunauer- Emmett- Teller ( BET) measurements, galvanostatic charge- discharge methods, and rotating ring- disk electrode ( RRDE) measurements. The electrochemical tests indicate that the MnO2/ C composites have excellent catalytic activity towards oxygen reduction reactions ( ORRs) due to the larger surface area of ordered mesoporous carbon and higher catalytic activity of MnO2. The O2 solubility, diffusion rates of O2 and O2 center dot- coefficients ( DO2 and DO -2), the rate constant ( kf) for producing O2 center dot-, and the propylene carbonate ( PC)- electrolyte decomposition rate constant ( k) of the MnO2/ C material were measured by RRDE experiments in the 0.1 M TBAPF6/ PC electrolyte. The values of kf and k for MnO2/ C are 4.29 X 10 - 2 cm s-1 and 2.6 s-1, respectively. The results indicate that the MnO2/ C cathode catalyst has higher electrocatalytic activity for the first step of ORR to produce O-2 center dot - and achieves a faster PC- electrolyte decomposition rate.
引用
收藏
页数:13
相关论文
共 40 条
[1]  
Bard A.J., 2001, ELECTROCHEMICAL METH, P519
[2]   Key scientific challenges in current rechargeable non-aqueous Li-O2 batteries: experiment and theory [J].
Bhatt, Mahesh Datt ;
Geaney, Hugh ;
Nolan, Michael ;
O'Dwyer, Colm .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2014, 16 (24) :12093-12130
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Promotion of oxygen reduction by a bio-inspired tethered iron phthalocyanine carbon nanotube-based catalyst [J].
Cao, Ruiguo ;
Thapa, Ranjit ;
Kim, Hyejung ;
Xu, Xiaodong ;
Kim, Min Gyu ;
Li, Qing ;
Park, Noejung ;
Liu, Meilin ;
Cho, Jaephil .
NATURE COMMUNICATIONS, 2013, 4
[5]   Recent advances in the development of Li-air batteries [J].
Capsoni, Doretta ;
Bini, Marcella ;
Ferrari, Stefania ;
Quartarone, Eliana ;
Mustarelli, Piercarlo .
JOURNAL OF POWER SOURCES, 2012, 220 :253-263
[6]   Direct rotating ring-disk measurement of the sodium borohydride diffusion coefficient in sodium hydroxide solutions [J].
Chatenet, M. ;
Molina-Concha, M. B. ;
El-Kissi, N. ;
Parrour, G. ;
Diard, J. -P. .
ELECTROCHIMICA ACTA, 2009, 54 (18) :4426-4435
[7]   Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries [J].
Cheng, H. ;
Scott, K. .
JOURNAL OF POWER SOURCES, 2010, 195 (05) :1370-1374
[8]   Carbon Nanofoam-Based Cathodes for Li-O2 Batteries: Correlation of Pore Solid Architecture and Electrochemical Performance [J].
Chervin, Christopher N. ;
Wattendorf, Michael J. ;
Long, Jeffrey W. ;
Kucko, Nathan W. ;
Rolison, Debra R. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2013, 160 (09) :A1510-A1516
[9]   α-MnO2 nanowires:: A catalyst for the O2 electrode in rechargeable lithium batteries [J].
Debart, Aurelie ;
Paterson, Allan J. ;
Bao, Jianli ;
Bruce, Peter G. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (24) :4521-4524
[10]   Influence of carbon pore size on the discharge capacity of Li-O2 batteries [J].
Ding, Ning ;
Chien, Sheau Wei ;
Hor, T. S. Andy ;
Lum, Regina ;
Zong, Yun ;
Liu, Zhaolin .
JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (31) :12433-12441