Flow Plex-A tool for unbiased comprehensive flow cytometry data analysis

被引:0
作者
Nowatzky, Johannes [1 ]
Resnick, Ezra [2 ]
Manasson, Julia [1 ]
Stagnar, Cristy [1 ]
Al-Obeidi, Arshed Fahad [1 ]
Manches, Olivier [3 ]
机构
[1] NYU, Sch Med, Dept Med, Div Rheumatol, NYU HJD 301 E 17th St,Room 1611, New York, NY 10003 USA
[2] Google Inc, New York, NY USA
[3] Univ Grenoble Alpes, Etablissement Francais Sang Auvergne Rhone Alpes, Rech & Dev Immunobiol & Immunotherapy Chron Dis, Inst Adv Biosci,INSERM,U1209,CNRS,UMR 5309, Grenoble, France
关键词
computation; data analysis; flow cytometry; RARE CELL-POPULATIONS; AUTOMATED IDENTIFICATION;
D O I
10.1002/iid3.246
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
IntroductionThe information content of multiparametric flow cytometry experiments is routinely underexploited given the paucity of adequate tools for unbiased comprehensive data analysis that can be applied successfully and independently by immunologists without computational training. MethodsWe aimed to develop a tool that allows straightforward access to the entire information content of any given flow cytometry panel for immunologists without special computational expertise. We used a data analysis approach which accounts for all mathematically possible combinations of markers in a given panel, coded the algorithm and applied the method to mined and self-generated data sets. ResultsWe developed Flow Plex, a straightforward computational tool that allows unrestricted access to the information content of a given flow cytometry panel, enables classification of human samples according to distinct immune phenotypes, such as different forms of autoimmune uveitis, acute myeloid leukemia vs healthy, old vs young, and facilitates the identification of cell populations with potential biologic relevance to states of disease and health. ConclusionsWe provide a tool that allows immunologists and other flow cytometry users with limited bioinformatics skills to extract comprehensive, unbiased information from flow cytometry data sets.
引用
收藏
页码:105 / 111
页数:7
相关论文
共 14 条
[1]  
Aghaeepour N, 2013, NAT METHODS, V10, P228, DOI [10.1038/NMETH.2365, 10.1038/nmeth.2365]
[2]   Automated identification of stratifying signatures in cellular subpopulations [J].
Bruggner, Robert V. ;
Bodenmiller, Bernd ;
Dill, David L. ;
Tibshirani, Robert J. ;
Nolan, Garry P. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (26) :E2770-E2777
[3]   From Cellular Characteristics to Disease Diagnosis: Uncovering Phenotypes with Supercells [J].
Candia, Julian ;
Maunu, Ryan ;
Driscoll, Meghan ;
Biancotto, Angelique ;
Dagur, Pradeep ;
McCoy, J. Philip, Jr. ;
Sen, H. Nida ;
Wei, Lai ;
Maritan, Amos ;
Cao, Kan ;
Nussenblatt, Robert B. ;
Banavar, Jayanth R. ;
Losert, Wolfgang .
PLOS COMPUTATIONAL BIOLOGY, 2013, 9 (09)
[4]   Identification of organ-specific T cell populations by analysis of multiparameter flow cytometry data using DNA-chip analysis software [J].
Hofmann, M ;
Zerwes, HG .
CYTOMETRY PART A, 2006, 69A (06) :533-540
[5]   Mapping cell populations in flow cytometry data for cross-sample comparison using the Friedman-Rafsky test statistic as a distance measure [J].
Hsiao, Chiaowen ;
Liu, Mengya ;
Stanton, Rick ;
McGee, Monnie ;
Qian, Yu ;
Scheuermann, Richard H. .
CYTOMETRY PART A, 2016, 89A (01) :71-88
[6]   COMPASS identifies T-cell subsets correlated with clinical outcomes [J].
Lin, Lin ;
Finak, Greg ;
Ushey, Kevin ;
Seshadri, Chetan ;
Hawn, Thomas R. ;
Frahm, Nicole ;
Scriba, Thomas J. ;
Mahomed, Hassan ;
Hanekom, Willem ;
Bart, Pierre-Alexandre ;
Pantaleo, Giuseppe ;
Tomaras, Georgia D. ;
Rerks-Ngarm, Supachai ;
Kaewkungwal, Jaranit ;
Nitayaphan, Sorachai ;
Pitisuttithum, Punnee ;
Michael, Nelson L. ;
Kim, Jerome H. ;
Robb, Merlin L. ;
O'Connell, Robert J. ;
Karasavvas, Nicos ;
Gilbert, Peter ;
De Rosa, Stephen C. ;
McElrath, M. Juliana ;
Gottardo, Raphael .
NATURE BIOTECHNOLOGY, 2015, 33 (06) :610-+
[7]   ClustVis: a web tool for visualizing clustering of multivariate data using Principal Component Analysis and heatmap [J].
Metsalu, Tauno ;
Vilo, Jaak .
NUCLEIC ACIDS RESEARCH, 2015, 43 (W1) :W566-W570
[8]   Recent Advances in Cytometry Applications: Preclinical, Clinical, and Cell Biology [J].
Mittag, Anja ;
Tarnok, Attila .
RECENT ADVANCES IN CYTOMETRY, PART B: ADVANCES IN APPLICATIONS, FIFTH EDITION, 2011, 103 :3-20
[9]   SWIFT-Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 2: Biological Evaluation [J].
Mosmann, Tim R. ;
Naim, Iftekhar ;
Rebhahn, Jonathan ;
Datta, Suprakash ;
Cavenaugh, James S. ;
Weaver, Jason M. ;
Sharma, Gaurav .
CYTOMETRY PART A, 2014, 85 (05) :422-433
[10]   SWIFT-Scalable Clustering for Automated Identification of Rare Cell Populations in Large, High-Dimensional Flow Cytometry Datasets, Part 1: Algorithm Design [J].
Naim, Iftekhar ;
Datta, Suprakash ;
Rebhahn, Jonathan ;
Cavenaugh, James S. ;
Mosmann, Tim R. ;
Sharma, Gaurav .
CYTOMETRY PART A, 2014, 85 (05) :408-421