The diagnosability of k-ary n-cubes with missing edges

被引:2
作者
Fan, Liqiang [1 ]
Yuan, Jun [1 ]
机构
[1] Taiyuan Univ Sci & Technol, Sch Appl Sci, Taiyuan 030024, Shanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Interconnection networks; diagnosability; fault tolerance; k-ary n-cubes; CONDITIONAL DIAGNOSABILITY;
D O I
10.1080/17445760.2019.1655741
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
The k-ary n-cube is a popular interconnection network for many multiprocessor systems because of its good topological structure. In this paper, we investigated the relationship between the fault diagnosability of k-ary n-cube with missing edges and its minimum degree of vertices. Let G be a k-ary n-cube with missing edges and the minimum degree delta(G) = r. Then we show that the diagnosability of G is r for r >= 3, n >= 2 under the PMC model and BGM model. [GRAPHICS] .
引用
收藏
页码:57 / 68
页数:12
相关论文
共 50 条
  • [31] Panconnectivity and Edge-Pancyclicity of k-Ary n-Cubes
    Hsieh, Sun-Yuan
    Lin, Tsong-Jie
    NETWORKS, 2009, 54 (01) : 1 - 11
  • [32] Matching preclusion for k-ary n-cubes with odd k ≥ 3
    Hu, Xiaomin
    Zhao, Bin
    Tian, Yingzhi
    Meng, Jixiang
    DISCRETE APPLIED MATHEMATICS, 2017, 229 : 90 - 100
  • [33] LEE DISTANCE AND TOPOLOGICAL PROPERTIES OF K-ARY N-CUBES
    BOSE, B
    BROEG, B
    KWON, Y
    ASHIR, Y
    IEEE TRANSACTIONS ON COMPUTERS, 1995, 44 (08) : 1021 - 1030
  • [34] Parallel Lagrange interpolation on k-ary n-cubes with maximum channel utilization
    Mahabadi, Aminollah
    Sarbazi-Azad, Hamid
    Khodaie, Ebrahim
    Navi, Keivan
    JOURNAL OF SUPERCOMPUTING, 2008, 46 (01) : 1 - 14
  • [35] A partial irregular-network routing on faulty k-ary n-cubes
    Koibuchi, Michihiro
    Yoshinaga, Tsutomu
    Nishimura, Yasuhiko
    INTERNATIONAL WORKSHOP ON INNOVATIVE ARCHITECTURE FOR FUTURE GENERATION HIGH PERFORMANCE PROCESSORS AND SYSTEMS, 2006, : 57 - 64
  • [36] Hamiltonian cycles passing through linear forests in k-ary n-cubes
    Wang, Shiying
    Yang, Yuxing
    Li, Jing
    Lin, Shangwei
    DISCRETE APPLIED MATHEMATICS, 2011, 159 (14) : 1425 - 1435
  • [37] Fault-tolerant embeddings of Hamiltonian circuits in k-ary n-cubes
    Ashir, YA
    Stewart, IA
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (03) : 317 - 328
  • [38] Many-to-many disjoint path covers in k-ary n-cubes
    Zhang, Shurong
    Wang, Shiying
    THEORETICAL COMPUTER SCIENCE, 2013, 491 : 103 - 118
  • [39] The Path-Structure Connectivity of Augmented k-ary n-cubes
    Ba, Lina
    Zhang, Yaxian
    Zhang, Heping
    COMPUTER JOURNAL, 2023, 66 (12) : 3119 - 3128
  • [40] Edge disjoint Hamiltonian cycles in k-ary n-cubes and hypercubes
    Bae, MM
    Bose, B
    IEEE TRANSACTIONS ON COMPUTERS, 2003, 52 (10) : 1271 - 1284