Multiple branches of travelling waves for the Gross-Pitaevskii equation

被引:9
|
作者
Chiron, David [1 ]
Scheid, Claire [2 ]
机构
[1] Univ Cote Azur, LJAD, CNRS, Nice, France
[2] Univ Cote Azur, Inria, CNRS, LJAD, Nice, France
关键词
nonlinear Schrodinger equation; travelling waves; Kadomtsev-Petviashvili equation; vortex; multi-lump solitary waves; NONLINEAR SCHRODINGER-EQUATION; GINZBURG-LANDAU EQUATION; GENERAL NONLINEARITY; NONZERO CONDITIONS; VORTEX SOLUTIONS; TRANSONIC LIMIT; SOLITARY WAVES; DYNAMICS; SOLITONS; INFINITY;
D O I
10.1088/1361-6544/aab4cc
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit solitary waves are known to exist for the Kadomtsev-Petviashvili-I (KP-I) equation in dimension 2. We first address numerically the question of their Morse index. The results confirm that the lump solitary wave has Morse index one and that the other explicit solutions correspond to excited states. We then turn to the 2D Gross-Pitaevskii (GP) equation, which in some long wave regime converges to the KP-I equation. Numerical simulations have already shown that a branch of travelling waves of GP converges to a ground state of KP-I, expected to be the lump. In this work, we perform numerical simulations showing that other explicit solitary waves solutions to the KP-I equation give rise to new branches of travelling waves of GP corresponding to excited states.
引用
收藏
页码:2809 / 2853
页数:45
相关论文
共 50 条
  • [31] Matter rogue waves and management by external potentials for coupled Gross-Pitaevskii equation
    Yu, Fajun
    NONLINEAR DYNAMICS, 2015, 80 (1-2) : 685 - 699
  • [32] Stochastic projected Gross-Pitaevskii equation
    Rooney, S. J.
    Blakie, P. B.
    Bradley, A. S.
    PHYSICAL REVIEW A, 2012, 86 (05):
  • [33] RIGOROUS DERIVATION OF THE GROSS-PITAEVSKII EQUATION WITH A LARGE INTERACTION POTENTIAL
    Erdos, Laszlo
    Schlein, Benjamin
    Yau, Horng-Tzer
    JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 22 (04) : 1099 - 1156
  • [34] LONG TIME BEHAVIOR OF GROSS-PITAEVSKII EQUATION AT POSITIVE TEMPERATURE
    De Bouard, Anne
    Debussche, Arnaud
    Fukuizumi, Reika
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2018, 50 (06) : 5887 - 5920
  • [35] Gross-Pitaevskii equation: Variational approach
    Perez, JCD
    Trallero-Giner, C
    Richard, VL
    Trallero-Herrero, C
    Birman, JL
    PHYSICA STATUS SOLIDI C - CONFERENCE AND CRITICAL REVIEWS, VOL 2, NO 10, 2005, 2 (10): : 3665 - 3668
  • [36] A symplectic scheme of Gross-Pitaevskii Equation
    Tian, YiMin
    2009 INTERNATIONAL SYMPOSIUM ON INTELLIGENT UBIQUITOUS COMPUTING AND EDUCATION, 2009, : 552 - 553
  • [37] Finite energy traveling waves for the Gross-Pitaevskii equation in the subsonic regime
    Bellazzini, Jacopo
    Ruiz, David
    AMERICAN JOURNAL OF MATHEMATICS, 2023, 145 (01) : 109 - 149
  • [38] Propagating and annihilating vortex dipoles in the Gross-Pitaevskii equation
    Rorai, Cecilia
    Sreenivasan, K. R.
    Fisher, Michael E.
    PHYSICAL REVIEW B, 2013, 88 (13):
  • [39] Analytical and numerical aspects in solving the controlled 3D Gross-Pitaevskii equation
    Fedele, R.
    Jovanovic, D.
    De Nicola, S.
    Eliasson, B.
    Shukla, P. K.
    NEW DEVELOPMENTS IN NONLINEAR PLASMA PHYSICS, 2009, 1188 : 356 - +
  • [40] ON THE CAUCHY PROBLEM AND THE BLACK SOLITONS OF A SINGULARLY PERTURBED GROSS-PITAEVSKII EQUATION
    Ianni, Isabella
    Le Coz, Stefan
    Royer, Julien
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (02) : 1060 - 1099