Multiple branches of travelling waves for the Gross-Pitaevskii equation

被引:9
|
作者
Chiron, David [1 ]
Scheid, Claire [2 ]
机构
[1] Univ Cote Azur, LJAD, CNRS, Nice, France
[2] Univ Cote Azur, Inria, CNRS, LJAD, Nice, France
关键词
nonlinear Schrodinger equation; travelling waves; Kadomtsev-Petviashvili equation; vortex; multi-lump solitary waves; NONLINEAR SCHRODINGER-EQUATION; GINZBURG-LANDAU EQUATION; GENERAL NONLINEARITY; NONZERO CONDITIONS; VORTEX SOLUTIONS; TRANSONIC LIMIT; SOLITARY WAVES; DYNAMICS; SOLITONS; INFINITY;
D O I
10.1088/1361-6544/aab4cc
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Explicit solitary waves are known to exist for the Kadomtsev-Petviashvili-I (KP-I) equation in dimension 2. We first address numerically the question of their Morse index. The results confirm that the lump solitary wave has Morse index one and that the other explicit solutions correspond to excited states. We then turn to the 2D Gross-Pitaevskii (GP) equation, which in some long wave regime converges to the KP-I equation. Numerical simulations have already shown that a branch of travelling waves of GP converges to a ground state of KP-I, expected to be the lump. In this work, we perform numerical simulations showing that other explicit solitary waves solutions to the KP-I equation give rise to new branches of travelling waves of GP corresponding to excited states.
引用
收藏
页码:2809 / 2853
页数:45
相关论文
共 50 条
  • [1] Travelling waves for the Gross-Pitaevskii equation, I
    Bethuel, F
    Saut, JC
    ANNALES DE L INSTITUT HENRI POINCARE-PHYSIQUE THEORIQUE, 1999, 70 (02): : 147 - 238
  • [2] Asymptotics for the travelling waves in the Gross-Pitaevskii equation
    Gravejat, P
    ASYMPTOTIC ANALYSIS, 2005, 45 (3-4) : 227 - 299
  • [3] Decay for travelling waves in the Gross-Pitaevskii equation
    Gravejat, P
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2004, 21 (05): : 591 - 637
  • [4] Travelling Waves for the Gross-Pitaevskii Equation II
    Bethuel, Fabrice
    Gravejat, Philippe
    Saut, Jean-Claude
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2009, 285 (02) : 567 - 651
  • [5] Existence and properties of travelling waves for the Gross-Pitaevskii equation
    Bethuel, Fabrice
    Gravejat, Philippe
    Saut, Jean-Claude
    STATIONARY AND TIME DEPENDENT GROSS-PITAEVSKII EQUATIONS, 2008, 473 : 55 - +
  • [6] Travelling waves for the Gross-Pitaevskii equation in dimension larger than two
    Chiron, D
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2004, 58 (1-2) : 175 - 204
  • [7] Adiabatic theorem for the Gross-Pitaevskii equation
    Gang, Zhou
    Grech, Philip
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2017, 42 (05) : 731 - 756
  • [8] COERCIVITY FOR TRAVELLING WAVES IN THE GROSS-PITAEVSKII EQUATION IN R2 FOR SMALL SPEED
    Chiron, David
    Pacherie, Eliot
    PUBLICACIONS MATEMATIQUES, 2023, 67 (01) : 277 - 410
  • [9] Existence and decay of traveling waves for the nonlocal Gross-Pitaevskii equation
    de Laire, Andre
    Lopez-Martinez, Salvador
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2022, 47 (09) : 1732 - 1794
  • [10] A lower bound on the energy of travelling waves of fixed speed for the Gross-Pitaevskii equation
    Tarquini, Emilien
    MONATSHEFTE FUR MATHEMATIK, 2007, 151 (04): : 333 - 339