Simple security proof of quantum key distribution based on complementarity

被引:212
作者
Koashi, M. [1 ,2 ]
机构
[1] Osaka Univ, Grad Sch Engn Sci, Div Mat Phys, Osaka 5608531, Japan
[2] CREST Photon Quantum Informat Project, Kawaguchi, Saitama 3310012, Japan
关键词
UNCONDITIONAL SECURITY; CRYPTOGRAPHY;
D O I
10.1088/1367-2630/11/4/045018
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We present an approach to the unconditional security of quantum key distribution protocols based on a complementarity argument. The approach is applicable to, but not limited to, every case that has been treated via the argument by Shor and Preskill based on entanglement distillation, with a benefit of decoupling of the error correction from the privacy amplification. It can also treat cases with uncharacterized apparatuses. We derive a secure key rate for the Bennett-Brassard-1984 protocol with an arbitrary source characterized only by a single parameter representing the basis dependence.
引用
收藏
页数:12
相关论文
共 26 条
[1]  
[Anonymous], 2007, ARXIV07043661
[2]  
[Anonymous], ARXIVQUANTPH0609180
[3]  
Bennett C.H., 1984, P IEEE INT C COMP SY, V175, DOI DOI 10.1016/J.TCS.2014.05.025
[4]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824
[5]   QUANTUM CRYPTOGRAPHY USING ANY 2 NONORTHOGONAL STATES [J].
BENNETT, CH .
PHYSICAL REVIEW LETTERS, 1992, 68 (21) :3121-3124
[6]   Optimal eavesdropping in quantum cryptography with six states [J].
Bruss, D .
PHYSICAL REVIEW LETTERS, 1998, 81 (14) :3018-3021
[7]   Good quantum error-correcting codes exist [J].
Calderbank, AR ;
Shor, PW .
PHYSICAL REVIEW A, 1996, 54 (02) :1098-1105
[8]  
Christandl M., 2004, ARXIVQUANTPH0402131
[9]  
Gottesman D, 2004, QUANTUM INF COMPUT, V4, P325
[10]  
HAMADA M, 2003, ARXIVQUANTPH0308039, V8