Verification of Parameterized Communicating Automata via Split-Width

被引:0
作者
Fortin, Marie [1 ]
Gastin, Paul [1 ]
机构
[1] Univ Paris Saclay, ENS Cachan, CNRS, LSV, F-94235 Cachan, France
来源
FOUNDATIONS OF SOFTWARE SCIENCE AND COMPUTATION STRUCTURES (FOSSACS 2016) | 2016年 / 9634卷
关键词
Parameterized distributed systems; Model checking; Split-width; Message sequence charts; MODEL CHECKING;
D O I
10.1007/978-3-662-49630-5_12
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
We study verification problems for distributed systems communicating via unbounded FIFO channels. The number of processes of the system as well as the communication topology are not fixed a priori. Systems are given by parameterized communicating automata (PCAs) which can be run on any communication topology of bounded degree, with arbitrarily many processes. Such systems are Turing powerful so we concentrate on under-approximate verification. We extend the notion of split-width to behaviors of PCAs. We show that emptiness, reachability and model-checking problems of PCAs are decidable when restricted to behaviors of bounded split-width. Reachability and emptiness are Exp-time-complete, but only polynomial in the size of the PCA. We also describe several concrete classes of bounded split-width, for which we prove similar results.
引用
收藏
页码:197 / 213
页数:17
相关论文
共 19 条
  • [1] Aiswarya C, 2014, LECT NOTES COMPUT SC, V8837, P1, DOI 10.1007/978-3-319-11936-6_1
  • [2] Aiswarya C., 2014, 34 INT C FDN SOFTW T, P11
  • [3] Aminof Benjamin, 2014, CONCUR 2014 - Concurrency Theory. 25th International Conference, CONCUR 2014. Proceedings: LNCS 8704, P109, DOI 10.1007/978-3-662-44584-6_9
  • [4] Aminof B, 2014, LECT NOTES COMPUT SC, V8318, P262, DOI 10.1007/978-3-642-54013-4_15
  • [5] [Anonymous], 1998, ITU TS RECOMMENDATIO
  • [6] Parameterized verification of communicating automata under context bounds
    Bollig, Benedikt
    Gastin, Paul
    Schubert, Jana
    [J]. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 2014, 8762 : 45 - 57
  • [7] Bollig B., 2014, CSL LICS 2014
  • [8] Bollig B., 2014, FSTTCS 2014 LIPICS, V29, P625
  • [9] ON COMMUNICATING FINITE-STATE MACHINES
    BRAND, D
    ZAFIROPULO, P
    [J]. JOURNAL OF THE ACM, 1983, 30 (02) : 323 - 342
  • [10] Courcelle B, 2012, ENCYCLOP MATH APPL, V138, P1, DOI 10.1017/CBO9780511977619