Incorporating radiomics into clinical trials: expert consensus on considerations for data-driven compared to biologically driven quantitative biomarkers

被引:79
作者
Fournier, Laure [1 ,2 ,3 ]
Costaridou, Lena [2 ,4 ]
Bidaut, Luc [3 ,5 ]
Michoux, Nicolas [3 ,6 ]
Lecouvet, Frederic E. [3 ,6 ]
de Geus-Oei, Lioe-Fee [3 ,7 ,8 ]
Boellaard, Ronald [2 ,9 ,10 ]
Oprea-Lager, Daniela E. [3 ,9 ]
Obuchowski, Nancy A. [10 ,11 ]
Caroli, Anna [2 ,12 ]
Kunz, Wolfgang G. [3 ,13 ]
Oei, Edwin H. [2 ,14 ]
O'Connor, James P. B. [2 ,15 ]
Mayerhoefer, Marius E. [2 ,16 ]
Franca, Manuela [2 ,17 ]
Alberich-Bayarri, Angel [2 ,18 ]
Deroose, Christophe M. [3 ,19 ,20 ]
Loewe, Christian [2 ,21 ]
Manniesing, Rashindra [2 ,22 ]
Caramella, Caroline [3 ,23 ]
Lopci, Egesta [3 ,24 ]
Lassau, Nathalie [2 ,3 ,10 ,25 ]
Persson, Anders [2 ,26 ,27 ]
Achten, Rik [2 ,28 ]
Rosendahl, Karen [2 ,29 ]
Clement, Olivier [2 ]
Kotter, Elmar [2 ,30 ]
Golay, Xavier [2 ,10 ,31 ]
Smits, Marion [2 ,3 ,14 ]
Dewey, Marc [2 ,32 ]
Sullivan, Daniel C. [2 ,10 ,33 ]
van der Lugt, Aad [2 ,14 ]
deSouza, Nandita M. [2 ,3 ,10 ,34 ,35 ]
机构
[1] Univ Paris, Dept Radiol, PARCC, Hop Europeen Georges Pompidou,INSERM,AP HP, F-75015 Paris, France
[2] European Soc Radiol, European Imaging Biomarkers Alliance EIBALL, Vienna, Austria
[3] European Org Res & Treatment Canc EORTC, Imaging Grp, Brussels, Belgium
[4] Univ Patras, Sch Med, Univ Campus, Patras 26500, Greece
[5] Univ Lincoln, Coll Sci, Lincoln LN6 7TS, England
[6] Univ Catholique Louvain UCLouvain, Clin Univ St Luc, Inst Rech Expt & Clin IREC, Dept Radiol, B-1200 Brussels, Belgium
[7] Leiden Univ, Dept Radiol, Med Ctr, Leiden, Netherlands
[8] Univ Twente, Biomed Photon Imaging Grp, Enschede, Netherlands
[9] Vrije Univ Amsterdam, Dept Radiol & Nucl Med, Canc Ctr Amsterdam, Amsterdam Univ,Med Ctr, Amsterdam, Netherlands
[10] Radiol Soc North Amer, Quantitat Imaging Biomarkers Alliance, Oak Brook, IL USA
[11] Cleveland Clin, Dept Quantitat Hlth Sci, Cleveland, OH 44106 USA
[12] Ist Ric Farmacol Mario Negri IRCCS, Dept Biomed Engn, Bergamo, Italy
[13] Ludwig Maximilians Univ Munchen, Univ Hosp, Dept Radiol, Munich, Germany
[14] Univ Med Ctr, Dept Radiol & Nucl Med, Erasmus MC, Rotterdam, Netherlands
[15] Univ Manchester, Div Canc Sci, Manchester, Lancs, England
[16] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Vienna, Austria
[17] Univ Porto, Inst Ciencias Biomed Abel Salazar, Dept Radiol, Ctr Hosp Univ Porto, Porto, Portugal
[18] Quantitat Imaging Biomarkers Med QUIBIM, Valencia, Spain
[19] Univ Hosp Leuven, Nucl Med, Leuven, Belgium
[20] Katholieke Univ Leuven, Dept Imaging & Pathol, Nucl Med & Mol Imaging, Leuven, Belgium
[21] Med Univ Vienna, Div Cardiovasc & Intervent Radiol, Dept Bioimaging & Image Guided Therapy, Vienna, Austria
[22] Radboud Univ Nijmegen, Dept Radiol & Nucl Med, Med Ctr, NL-6525 GA Nijmegen, Netherlands
[23] Univ Paris Saclay, Inst Oncol Thorac, Dept Radiol, Hop Marie Lannelongue, Le Plessis Robinson, France
[24] Humanitas Clin & Res Hosp IRCCS, Nucl Med, Rozzano, MI, Italy
[25] Univ Paris Saclay, Dept Imaging, INSERM,CNRS, UMR 1281,CEA,Gustave Roussy Canc Campus Grand, St Aubin, France
[26] Linkoping Univ, Dept Radiol, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
[27] Linkoping Univ, Dept Hlth Med & Caring Sci, Ctr Med Image Sci & Visualizat CMIV, Linkoping, Sweden
[28] Ghent Univ Hosp, Dept Radiol & Med Imaging, Ghent, Belgium
[29] Univ Hosp North Norway, Dept Radiol, Tromso, Norway
[30] Univ Med Ctr Freiburg, Dept Radiol, Freiburg, Germany
[31] UCL, Queen Sq Inst Neurol, London, England
[32] Charite Univ Med Berlin, Dept Radiol, Berlin, Germany
[33] Duke Univ, Dept Radiol, 311 Res Dr, Durham, NC 27710 USA
[34] Inst Canc Res, Div Radiotherapy & Imaging, London, England
[35] Royal Marsden NHS Fdn Trust, London, England
关键词
Radiology; Statistics and numerical data; Standardization; Validation studies; Clinical trial; MACHINE LEARNING-METHODS; LOWER-GRADE GLIOMAS; TREATMENT RESPONSE; PROSTATE-CANCER; IMAGING BIOMARKERS; STRATEGY PIPELINE; PROGNOSTIC VALUE; CERVICAL-CANCER; MRI FEATURES; LUNG;
D O I
10.1007/s00330-020-07598-8
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Existing quantitative imaging biomarkers (QIBs) are associated with known biological tissue characteristics and follow a well-understood path of technical, biological and clinical validation before incorporation into clinical trials. In radiomics, novel data-driven processes extract numerous visually imperceptible statistical features from the imaging data with no a priori assumptions on their correlation with biological processes. The selection of relevant features (radiomic signature) and incorporation into clinical trials therefore requires additional considerations to ensure meaningful imaging endpoints. Also, the number of radiomic features tested means that power calculations would result in sample sizes impossible to achieve within clinical trials. This article examines how the process of standardising and validating data-driven imaging biomarkers differs from those based on biological associations. Radiomic signatures are best developed initially on datasets that represent diversity of acquisition protocols as well as diversity of disease and of normal findings, rather than within clinical trials with standardised and optimised protocols as this would risk the selection of radiomic features being linked to the imaging process rather than the pathology. Normalisation through discretisation and feature harmonisation are essential pre-processing steps. Biological correlation may be performed after the technical and clinical validity of a radiomic signature is established, but is not mandatory. Feature selection may be part of discovery within a radiomics-specific trial or represent exploratory endpoints within an established trial; a previously validated radiomic signature may even be used as a primary/secondary endpoint, particularly if associations are demonstrated with specific biological processes and pathways being targeted within clinical trials.
引用
收藏
页码:6001 / 6012
页数:12
相关论文
共 111 条
[1]   From Handcrafted to Deep-Learning-Based Cancer Radiomics Challenges and opportunities [J].
Afshar, Parnian ;
Mohammadi, Arash ;
Plataniotis, Konstantinos N. ;
Oikonomou, Anastasia ;
Benali, Habib .
IEEE SIGNAL PROCESSING MAGAZINE, 2019, 36 (04) :132-160
[2]   Deep learning for segmentation of brain tumors: Impact of cross-institutional training and testing [J].
AlBadawy, Ehab A. ;
Saha, Ashirbani ;
Mazurowski, Maciej A. .
MEDICAL PHYSICS, 2018, 45 (03) :1150-1158
[3]   Radiological evaluation of response to treatment: Application to metastatic renal cancers receiving anti-angiogenic treatment [J].
Ammari, S. ;
Thiam, R. ;
Cuenod, C. A. ;
Oudard, S. ;
Hernigou, A. ;
Grataloup, C. ;
Siauve, N. ;
Medioni, J. ;
Fournier, L. S. .
DIAGNOSTIC AND INTERVENTIONAL IMAGING, 2014, 95 (06) :527-539
[4]   Radiomics Analysis on FLT-PET/MRI for Characterization of Early Treatment Response in Renal Cell Carcinoma: A Proof-of-Concept Study [J].
Antunes, Jacob ;
Viswanath, Satish ;
Rusu, Mirabela ;
Valls, Laia ;
Hoimes, Christopher ;
Avril, Norbert ;
Madabhushi, Anant .
TRANSLATIONAL ONCOLOGY, 2016, 9 (02) :155-162
[5]   Machine and deep learning methods for radiomics [J].
Avanzo, Michele ;
Wei, Lise ;
Stancanello, Joseph ;
Vallieres, Martin ;
Rao, Arvind ;
Morin, Olivier ;
Mattonen, Sarah A. ;
El Naqa, Issam .
MEDICAL PHYSICS, 2020, 47 (05) :E185-E202
[6]   Radiomics, Tumor Volume, and Blood Biomarkers for Early Prediction of Pseudoprogression in Patients with Metastatic Melanoma Treated with Immune Checkpoint Inhibition [J].
Basler, Lucas ;
Gabrys, Hubert S. ;
Hogan, Sabrina A. ;
Pavic, Matea ;
Bogowicz, Marta ;
Vuong, Diem ;
Tanadini-Lang, Stephanie ;
Forster, Robert ;
Kudura, Ken ;
Huellner, Martin W. ;
Dummer, Reinhard ;
Guckenberger, Matthias ;
Levesque, Mitchell P. .
CLINICAL CANCER RESEARCH, 2020, 26 (16) :4414-4425
[7]   MRI radiomic features are associated with survival in melanoma brain metastases treated with immune checkpoint inhibitors [J].
Bhatia, Ankush ;
Birger, Maxwell ;
Veeraraghavan, Harini ;
Um, Hyemin ;
Tixier, Florent ;
McKenney, Anna Sophia ;
Cugliari, Marina ;
Caviasco, Annalise ;
Bialczak, Angelica ;
Malani, Rachna ;
Flynn, Jessica ;
Zhang, Zhigang ;
Yang, T. Jonathan ;
Santomasso, Bianca D. ;
Shoushtari, Alexander N. ;
Young, Robert J. .
NEURO-ONCOLOGY, 2019, 21 (12) :1578-1586
[8]   Radiomics: A primer for the radiation oncologist [J].
Bibault, J. -E. ;
Xing, L. ;
Giraud, P. ;
El Ayachy, R. ;
Giraud, N. ;
Decazes, P. ;
Burgun, A. ;
Giraud, P. .
CANCER RADIOTHERAPIE, 2020, 24 (05) :403-410
[9]   Deep Learning and Radiomics predict complete response after neo-adjuvant chemoradiation for locally advanced rectal cancer [J].
Bibault, Jean-Emmanuel ;
Giraud, Philippe ;
Durdux, Catherine ;
Taieb, Julien ;
Berger, Anne ;
Coriat, Romain ;
Chaussade, Stanislas ;
Dousset, Bertrand ;
Nordlinger, Bernard ;
Burgun, Anita .
SCIENTIFIC REPORTS, 2018, 8
[10]   Computed Tomography Radiomics Predicts HPV Status and Local Tumor Control After Definitive Radiochemotherapy in Head and Neck Squamous Cell Carcinoma [J].
Bogowicz, Marta ;
Riesterer, Oliver ;
Ikenberg, Kristian ;
Stieb, Sonja ;
Moch, Holger ;
Studer, Gabriela ;
Guckenberger, Matthias ;
Tanadini-Lang, Stephanie .
INTERNATIONAL JOURNAL OF RADIATION ONCOLOGY BIOLOGY PHYSICS, 2017, 99 (04) :921-928