Parameter identification for elliptic boundary value problems: an abstract framework and applications

被引:4
作者
Hoffmann, Heiko [1 ]
Wald, Anne [2 ]
Tram Thi Ngoc Nguyen [3 ]
机构
[1] Siegen Univ, Dept Math, Walter Flex Str 3, D-57072 Siegen, Germany
[2] Univ Gottingen, Inst Numer & Appl Math, Lotzestr 16-18, D-37083 Gottingen, Germany
[3] Karl Franzens Univ Graz, Inst Math & Sci Comp, Heinrichstr 36, A-8010 Graz, Austria
关键词
inverse problems; parameter identification; elliptic partial differential equations; inverse scattering; existence and uniqueness of weak solutions; tangential cone condition; form methods; INVERSE MEDIUM SCATTERING; HELMHOLTZ-EQUATION; FORMS; REGULARIZATION;
D O I
10.1088/1361-6420/ac6d02
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Parameter identification problems for partial differential equations are an important subclass of inverse problems. The parameter-to-state map, which maps the parameter of interest to the respective solution of the PDE or state of the system, plays the central role in the (usually nonlinear) forward operator. Consequently, one is interested in well-definedness and further analytic properties such as continuity and differentiability of this operator w.r.t. the parameter in order to make sure that techniques from inverse problems theory may be successfully applied to solve the inverse problem. In this work, we present a general functional analytic framework suited for the study of a huge class of parameter identification problems including a variety of elliptic boundary value problems with Dirichlet, Neumann, Robin or mixed boundary conditions in Hilbert and Banach spaces and possibly complex-valued parameters. In particular, we show that the corresponding parameter-to-state operators fulfill, under suitable conditions, the tangential cone condition, which is often postulated for numerical solution techniques. This framework particularly covers the inverse medium problem and an inverse problem that arises in terahertz tomography.
引用
收藏
页数:49
相关论文
共 50 条
  • [41] A numerical approach for the determination of a missing boundary data in elliptic problems
    Slodicka, M
    Van Keer, R
    APPLIED MATHEMATICS AND COMPUTATION, 2004, 147 (02) : 569 - 580
  • [42] A Modified Steepest Descent Scheme for Solving a Class of Parameter Identification Problems
    Rajan, M. P.
    Salam, Niloopher
    RESULTS IN MATHEMATICS, 2023, 78 (06)
  • [43] A Modified Steepest Descent Scheme for Solving a Class of Parameter Identification Problems
    M. P. Rajan
    Niloopher Salam
    Results in Mathematics, 2023, 78
  • [44] Inverse problems in geographical economics: parameter identification in the spatial Solow model
    Engbers, Ralf
    Burger, Martin
    Capasso, Vincenzo
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2014, 372 (2028):
  • [45] Explicit solutions for distributed, boundary and distributed-boundary elliptic optimal control problems
    Bollati, Julieta
    Gariboldi, Claudia M.
    Tarzia, Domingo A.
    JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2020, 64 (1-2) : 283 - 311
  • [46] An Inverse Parameter Identification in Finite Element Problems Using Machine Learning-Aided Optimization Framework
    Tariq, A.
    Deliktas, B.
    EXPERIMENTAL MECHANICS, 2025, 65 (03) : 325 - 349
  • [47] Adaptive reduced basis trust region methods for parameter identification problems
    Michael Kartmann
    Tim Keil
    Mario Ohlberger
    Stefan Volkwein
    Barbara Kaltenbacher
    Computational Science and Engineering, 1 (1):
  • [48] Identification of Sparsely Representable Diffusion Parameters in Elliptic Problems
    Felber, Luzia N.
    Harbrecht, Helmut
    Schmidlin, Marc
    SIAM JOURNAL ON IMAGING SCIENCES, 2024, 17 (01) : 61 - 90
  • [49] Rank Reduction Algorithms for Filtering and Parameter Estimation in Inverse Problems with Applications
    Owusu, Robert K. A.
    2009 2ND INTERNATIONAL SYMPOSIUM ON APPLIED SCIENCES IN BIOMEDICAL AND COMMUNICATION TECHNOLOGIES (ISABEL 2009), 2009, : 400 - 406
  • [50] Perturbed Dirac Operators and Boundary Value Problems
    Liu, Xiaopeng
    Liu, Yuanyuan
    AXIOMS, 2024, 13 (06)