New generalized hyperbolic functions and auto-Backlund transformation to find new exact solutions of the (2+1)-dimensional NNV equation

被引:53
作者
Ren, Yujie [1 ]
Zhang, Hongqing
机构
[1] Dalian Univ Technol, Dept Appl Math, Dalian 116024, Peoples R China
[2] Dalian Inst Light Ind, Dept Math & Phys, Dalian 116034, Peoples R China
关键词
generalized hyperbolic functions; (2+1)-dimensional NNV equations; auto-Backlund transformation; exact solution; generalized hyperbolic function transformation;
D O I
10.1016/j.physleta.2006.04.082
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In the present Letter, we first time define new functions (called generalized hyperbolic functions) and devise new kinds of transformation (called generalized hyperbolic function transformation) to construct new exact solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation and the auto-Backlund transformation of the (2 + 1)-dimensional Nizhnik-Novikov-Veselov (NNV) equations, we obtain abundant families of new exact solutions of the NNV equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions and different regions of the independent variables in these solutions by their figures. As a result, we find that these parameter values and the region size of the independent variables affect some solution structure. Therefore, we may regulate these parameter values and the region size to control the shape and number of solitons on the basis of our different requirements by means of computer simulation. These solutions may be useful to explain some physical phenomena. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:438 / 448
页数:11
相关论文
共 15 条
[1]  
Duan CG, 2001, COMMUN THEOR PHYS, V35, P36
[2]   NONLINEAR SUPERPOSITION FORMULA OF THE NOVIKOV-VESELOV EQUATION [J].
HU, XB .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1994, 27 (04) :1331-1338
[3]   SIMPLE DERIVATION OF BACKLUND TRANSFORMATION FROM RICCATI FORM OF INVERSE METHOD [J].
KONNO, K ;
WADATI, M .
PROGRESS OF THEORETICAL PHYSICS, 1975, 53 (06) :1652-1656
[4]   On the coherent structures of the Nizhnik-Novikov-Veselov equation [J].
Lou, SY .
PHYSICS LETTERS A, 2000, 277 (02) :94-100
[5]  
Miura MR., 1978, Backlund Transformation
[6]   A generalized F-expansion method to find abundant families of Jacobi Elliptic Function solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation [J].
Ren, YJ ;
Zhang, HQ .
CHAOS SOLITONS & FRACTALS, 2006, 27 (04) :959-979
[7]   Backlund transformations for the Nizhnik-Novikov-Veselov equation [J].
Vekslerchik, VE .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2004, 37 (21) :5667-5678
[8]  
VESELOV AP, 1984, SOV MATH DOKL, V30, P588
[9]  
WADATI M, 1975, J PHYS SOC JPN, V38, P681, DOI 10.1143/JPSJ.38.681
[10]   Auto-Backlund transformation and new exact solutions of the (2+1)-dimensional Nizhnik-Novikov-Veselov equation [J].
Wang, DS ;
Zhang, HQ .
INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (03) :393-412