Molecular Spintronics: Destructive Quantum Interference Controlled by a Gate

被引:65
作者
Saraiva-Souza, Aldilene [1 ,2 ]
Smeu, Manuel [3 ]
Zhang, Lei [1 ,2 ]
Souza Filho, Antonio Gomes [4 ]
Guo, Hong [1 ,2 ]
Ratner, Mark A. [3 ]
机构
[1] McGill Univ, Ctr Phys Mat, Montreal, PQ H3A 2T8, Canada
[2] McGill Univ, Dept Phys, Montreal, PQ H3A 2T8, Canada
[3] Northwestern Univ, Dept Chem, Evanston, IL 60208 USA
[4] Univ Fed Ceara, Dept Fis, BR-60440900 Fortaleza, Ceara, Brazil
基金
美国国家科学基金会;
关键词
ELECTRON-TRANSPORT; GRAPHENE; CONDUCTANCE; EXCHANGE; JUNCTIONS;
D O I
10.1021/ja508537n
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The ability to control the spin-transport properties of a molecule bridging conducting electrodes is of paramount importance to molecular spintronics. Quantum interference can play an important role in allowing or forbidding electrons from passing through a system. In this work, the spin-transport properties of a polyacetylene chain bridging zigzag graphene nanoribbons (ZGNRs) are studied with nonequilibrium Greens function calculations performed within the density functional theory framework (NEGF-DFT). ZGNR electrodes have inherent spin polarization along their edges, which causes a splitting between the properties of spin-up and spin-down electrons in these systems. Upon adding an imidazole donor group and a pyridine acceptor group to the polyacetylene chain, this causes destructive interference features in the electron transmission spectrum. Particularly, the donor group causes a large antiresonance dip in transmission at the Fermi energy EF of the electrodes. The application of a gate is investigated and found to provide control over the energy position of this feature making it possible to turn this phenomenon on and off. The currentvoltage (IV) characteristics of this system are also calculated, showing near ohmic scaling for spin-up but negative differential resistance (NDR) for spin-down.
引用
收藏
页码:15065 / 15071
页数:7
相关论文
共 53 条
[1]  
[Anonymous], 1964, PHY REV
[2]   Coherent Transport through Spin-Crossover Single Molecules [J].
Aravena, Daniel ;
Ruiz, Eliseo .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (02) :777-779
[3]   Signatures of Quantum Interference Effects on Charge Transport Through a Single Benzene Ring [J].
Arroyo, Carlos R. ;
Tarkuc, Simge ;
Frisenda, Riccardo ;
Seldenthuis, Johannes S. ;
Woerde, Charlotte H. M. ;
Eelkema, Rienk ;
Grozema, Ferdinand C. ;
van der Zant, Herre S. J. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (11) :3152-3155
[4]   MOLECULAR RECTIFIERS [J].
AVIRAM, A ;
RATNER, MA .
CHEMICAL PHYSICS LETTERS, 1974, 29 (02) :277-283
[5]   Nonmechanical Conductance Switching in a Molecular Tunnel Junction [J].
Baratz, Adva ;
Baer, Roi .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2012, 3 (04) :498-502
[6]   Interface geometry and molecular junction conductance: Geometric fluctuation and stochastic switching [J].
Basch, H ;
Cohen, R ;
Ratner, MA .
NANO LETTERS, 2005, 5 (09) :1668-1675
[7]   Quantum Transport in Graphene Nanonetworks [J].
Botello-Mendez, Andres R. ;
Cruz-Silva, Eduardo ;
Romo-Herrera, Jose M. ;
Lopez-Urias, Florentino ;
Terrones, Mauricio ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Charlier, Jean-Christophe ;
Meunier, Vincent .
NANO LETTERS, 2011, 11 (08) :3058-3064
[8]   High-Performance Photoresponsive Organic Nanotransistors with Single-Layer Graphenes as Two-Dimensional Electrodes [J].
Cao, Yang ;
Liu, Song ;
Shen, Qian ;
Yan, Kai ;
Li, Pingjian ;
Xu, Jun ;
Yu, Dapeng ;
Steigerwald, Michael L. ;
Nuckolls, Colin ;
Liu, Zhongfan ;
Guo, Xuefeng .
ADVANCED FUNCTIONAL MATERIALS, 2009, 19 (17) :2743-2748
[9]   Controlling quantum transport through a single molecule [J].
Cardamone, David M. ;
Stafford, Charles A. ;
Mazumdar, Sumit .
NANO LETTERS, 2006, 6 (11) :2422-2426
[10]   From graphene constrictions to single carbon chains [J].
Chuvilin, Andrey ;
Meyer, Jannik C. ;
Algara-Siller, Gerardo ;
Kaiser, Ute .
NEW JOURNAL OF PHYSICS, 2009, 11