Practical figures of merit and thresholds for entanglement distribution in quantum networks

被引:66
作者
Khatri, Sumeet [1 ]
Matyas, Corey T. [1 ]
Siddiqui, Aliza U. [1 ]
Dowling, Jonathan P. [1 ,2 ,3 ,4 ]
机构
[1] Louisiana State Univ, Hearne Inst Theoret Phys, Dept Phys & Astron, Baton Rouge, LA 70803 USA
[2] Natl Inst Informat & Commun Technol, 4-2-1 Nukui Kitamachi, Koganei, Tokyo 1848795, Japan
[3] NYU Shanghai, NYU ECNU Inst Phys, Shanghai 200062, Peoples R China
[4] USTC, CAS Alihaba Quantum Comp Lab, Shanghai 201315, Peoples R China
来源
PHYSICAL REVIEW RESEARCH | 2019年 / 1卷 / 02期
基金
美国国家科学基金会;
关键词
ATOMIC ENSEMBLES; COMMUNICATION; STATE; TELEPORTATION; REPEATERS; CRYPTOGRAPHY; PURIFICATION; SECURITY; PRIVATE; BOUNDS;
D O I
10.1103/PhysRevResearch.1.023032
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Before global-scale quantum networks become operational, it is important to consider how to evaluate their performance so that they can be built to achieve the desired performance. We propose two practical figures of merit for the performance of a quantum network: the average connection time and the average largest entanglement cluster size. These quantities are based on the generation of elementary links in a quantum network, which is a crucial initial requirement that must be met before any long-range entanglement distribution can be achieved and is inherently probabilistic with current implementations. We obtain bounds on these figures of merit for a particular class of quantum repeater protocols consisting of repeat-until-success elementary link generation followed by joining measurements at intermediate nodes that extend the entanglement range. Our results lead to requirements on quantum memory coherence times, requirements on repeater chain lengths in order to surpass the repeaterless rate limit, and requirements on other aspects of quantum network implementations. These requirements are based solely on the inherently probabilistic nature of elementary link generation in quantum networks, and they apply to networks with arbitrary topology.
引用
收藏
页数:16
相关论文
共 111 条
[1]  
[Anonymous], 1984, P IEEE INT C COMP, DOI DOI 10.1016/J.TCS.2014.05.025
[2]   Quantum repeaters with individual rare-earth ions at telecommunication wavelengths [J].
Asadi, F. Kimiaee ;
Lauk, N. ;
Wein, S. ;
Sinclair, N. ;
O'Brien, C. ;
Simon, C. .
QUANTUM, 2018, 2
[3]   Multiparticle entanglement purification for two-colorable graph states -: art. no. 012319 [J].
Aschauer, H ;
Dür, W ;
Briegel, HJ .
PHYSICAL REVIEW A, 2005, 71 (01)
[4]   Aggregating quantum repeaters for the quantum internet [J].
Azuma, Koji ;
Kato, Go .
PHYSICAL REVIEW A, 2017, 96 (03)
[5]   Fundamental rate-loss trade-off for the quantum internet [J].
Azuma, Koji ;
Mizutani, Akihiro ;
Lo, Hoi-Kwong .
NATURE COMMUNICATIONS, 2016, 7
[6]   Limitations on quantum key repeaters [J].
Baeuml, Stefan ;
Christandl, Matthias ;
Horodecki, Karol ;
Winter, Andreas .
NATURE COMMUNICATIONS, 2015, 6
[7]  
Bauml S., ARXIV180903120
[8]   Fundamental limitation on quantum broadcast networks [J].
Bauml, Stefan ;
Azuma, Koji .
QUANTUM SCIENCE AND TECHNOLOGY, 2017, 2 (02)
[9]   TELEPORTING AN UNKNOWN QUANTUM STATE VIA DUAL CLASSICAL AND EINSTEIN-PODOLSKY-ROSEN CHANNELS [J].
BENNETT, CH ;
BRASSARD, G ;
CREPEAU, C ;
JOZSA, R ;
PERES, A ;
WOOTTERS, WK .
PHYSICAL REVIEW LETTERS, 1993, 70 (13) :1895-1899
[10]  
Bennett CH, 1996, PHYS REV A, V54, P3824, DOI 10.1103/PhysRevA.54.3824