AN UPPER BOUND ON THE FRACTIONAL CHROMATIC NUMBER OF TRIANGLE-FREE SUBCUBIC GRAPHS

被引:2
|
作者
Liu, Chun-Hung [1 ]
机构
[1] Georgia Inst Technol, Sch Math, Atlanta, GA 30332 USA
关键词
fractional chromatic number; triangle-free graphs; subcubic graphs;
D O I
10.1137/120900678
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An (a : b)-coloring of a graph G is a function f which maps the vertices of G into b-element subsets of some set of size a in such a way that f(u) is disjoint from f(v) for every two adjacent vertices u and v in G. The fractional chromatic number chi(f)(G) is the infimum of a/b over all pairs of positive integers a, b such that G has an (a : b)-coloring. Heckman and Thomas conjectured that the fractional chromatic number of every triangle-free graph G of maximum degree at most three is at most 2.8. Hatami and Zhu proved that chi(f)(G) <= 3 - 3/64 approximate to 2.953. Lu and Peng improved the bound to chi(f) (G) <= 3 - 3/43 approximate to 2.930. Recently, Ferguson, Kaiser, and Kral' proved that chi(f) (G) <= 32/11 approximate to 2.909. In this paper, we prove that chi(f) (G) <= 43/15 approximate to 2.867.
引用
收藏
页码:1102 / 1136
页数:35
相关论文
共 50 条
  • [31] Enumerating Minimal Dominating Sets in Triangle-Free Graphs
    Bonamy, Marthe
    Defrain, Oscar
    Heinrich, Marc
    Raymond, Jean-Florent
    36TH INTERNATIONAL SYMPOSIUM ON THEORETICAL ASPECTS OF COMPUTER SCIENCE (STACS 2019), 2019,
  • [32] Some spectral inequalities for triangle-free regular graphs
    Koledin, Tamara
    Stanic, Zoran
    FILOMAT, 2013, 27 (08) : 1561 - 1567
  • [33] Colouring vertices of triangle-free graphs without forests
    Dabrowski, Konrad K.
    Lozin, Vadim
    Raman, Rajiv
    Ries, Bernard
    DISCRETE MATHEMATICS, 2012, 312 (07) : 1372 - 1385
  • [34] Coloring triangle-free graphs with local list sizes
    Davies, Ewan
    de Joannis de Verclos, Remi
    Kang, Ross J.
    Pirot, Francois
    RANDOM STRUCTURES & ALGORITHMS, 2020, 57 (03) : 730 - 744
  • [35] A Class of Three-Colorable Triangle-Free Graphs
    Radovanovic, Marko
    Vuskovic, Kristina
    JOURNAL OF GRAPH THEORY, 2013, 72 (04) : 430 - 439
  • [36] The g-good-neighbor diagnosability of triangle-free graphs
    Sardroud, Asghar A. Asgharian
    Ghasemi, Mohsen
    JOURNAL OF SUPERCOMPUTING, 2023, 79 (07) : 7272 - 7285
  • [37] Girth and fractional chromatic number of planar graphs
    Pirnazar, A
    Ullman, DH
    JOURNAL OF GRAPH THEORY, 2002, 39 (03) : 201 - 217
  • [38] The fractional chromatic number of Zykov products of graphs
    Charbit, Pierre
    Sereni, Jean Sebastien
    APPLIED MATHEMATICS LETTERS, 2011, 24 (04) : 432 - 437
  • [39] Hereditary equality of domination and exponential domination in triangle-free graphs
    Chen, Xue-gang
    Wang, Yu-feng
    UTILITAS MATHEMATICA, 2020, 116 : 261 - 273
  • [40] New eigenvalue bound for the fractional chromatic number
    Guo, Krystal
    Spiro, Sam
    JOURNAL OF GRAPH THEORY, 2024, 106 (01) : 167 - 181