Visualizing Macroscopic Inhomogeneities in Perovskite Solar Cells

被引:35
作者
Dasgupta, Akash [1 ]
Mahesh, Suhas [1 ,3 ]
Caprioglio, Pietro [1 ]
Lin, Yen-Hung [1 ]
Zaininger, Karl-Augustin [1 ]
Oliver, Robert D. J. [1 ]
Holzhey, Philippe [1 ]
Zhou, Suer [1 ]
McCarthy, Melissa M. [1 ]
Smith, Joel A. [1 ]
Frenzel, Maximilian [1 ,2 ]
Christoforo, M. Greyson [1 ]
Ball, James M. [1 ]
Wenger, Bernard [1 ]
Snaith, Henry J. [1 ]
机构
[1] Univ Oxford, Dept Phys, Oxford OX1 3PU, England
[2] Fritz Haber Inst, Dept Phys Chem, D-14195 Berlin, Germany
[3] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G8, Canada
基金
英国工程与自然科学研究理事会;
关键词
EFFICIENCY; RECOMBINATION;
D O I
10.1021/acsenergylett.2c01094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the incredible progress made, the highest efficiency perovskite solar cells are still restricted to small areas (<1 cm(2)). In large part, this stems from a poor understanding of the widespread spatial heterogeneity in devices. Conventional techniques to assess heterogeneities can be time consuming, operate only at microscopic length scales, and demand specialized equipment. We overcome these limitations by using luminescence imaging to reveal large, millimeter-scale heterogeneities in the inferred electronic properties. We determine spatially resolved maps of "charge collection quality", measured using the ratio of photoluminescence intensity at open and short circuit. We apply these methods to quantify the inhomogeneities introduced by a wide range of transport layers, thereby ranking them by suitability for upscaling. We reveal that top-contacting transport layers are the dominant source of heterogeneity in the multilayer material stack. We suggest that this methodology can be used to accelerate the development of highly efficient, large-area modules, especially through high-throughput experimentation.
引用
收藏
页码:2311 / 2322
页数:12
相关论文
共 48 条
[21]   Novel efficient C60-based inverted perovskite solar cells with negligible hysteresis [J].
Liu, Xingyue ;
Liu, Zhiyong ;
Ye, Haibo ;
Tu, Yuxue ;
Sun, Bo ;
Tan, Xianhua ;
Shi, Tielin ;
Tang, Zirong ;
Liao, Guanglan .
ELECTROCHIMICA ACTA, 2018, 288 :115-125
[22]   Analysing the effect of crystal size and structure in highly efficient CH3NH3PbI3 perovskite solar cells by spatially resolved photo- and electroluminescence imaging [J].
Mastroianni, S. ;
Heinz, F. D. ;
Im, J. -H. ;
Veurman, W. ;
Padilla, M. ;
Schubert, M. C. ;
Wuerfel, U. ;
Graetzel, M. ;
Park, N. -G. ;
Hinsch, A. .
NANOSCALE, 2015, 7 (46) :19653-19662
[23]  
McCarthy MM, 2018, MRS ADV, V3, P3075, DOI 10.1557/adv.2018.515
[24]   Quantitative Local Loss Analysis of Blade-Coated Perovskite Solar Cells [J].
Mundt, Laura E. ;
Kwapil, Wolfram ;
Yakoob, Mohammed A. ;
Herterich, Jan P. ;
Kohlstaedt, Markus ;
Wuerfel, Uli ;
Schubert, Martin C. ;
Glunz, Stefan W. .
IEEE JOURNAL OF PHOTOVOLTAICS, 2019, 9 (02) :452-459
[25]   Degradation mechanism of perovskite CH3NH3PbI3 diode devices studied by electroluminescence and photoluminescence imaging spectroscopy [J].
Okano, Makoto ;
Endo, Masaru ;
Wakamiya, Atsushi ;
Yoshita, Masahiro ;
Akiyama, Hidefumi ;
Kanemitsu, Yoshihiko .
APPLIED PHYSICS EXPRESS, 2015, 8 (10)
[26]   Passivation, conductivity, and selectivity in solar cell contacts: Concepts and simulations based on a unified partial-resistances framework [J].
Onno, Arthur ;
Chen, Christopher ;
Koswatta, Priyaranga ;
Boccard, Mathieu ;
Holman, Zachary C. .
JOURNAL OF APPLIED PHYSICS, 2019, 126 (18)
[27]   Short-circuit current density mapping for solar cells [J].
Padilla, M. ;
Michl, B. ;
Thaidigsmann, B. ;
Warta, W. ;
Schubert, M. C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2014, 120 :282-288
[28]  
Peter Wurfel U. W, 2016, Physics of Solar Cells: Basic Principles to Advanced Concepts, V3rd, P288
[29]   Photocurrent collection efficiency mapping of a silicon solar cell by a differential luminescence imaging technique [J].
Rau, U. ;
Huhn, V. ;
Stoicescu, L. ;
Schneemann, M. ;
Augarten, Y. ;
Gerber, A. ;
Pieters, B. E. .
APPLIED PHYSICS LETTERS, 2014, 105 (16)
[30]  
Rau U., 2015, Photon Management in Solar Cells, P21