Visualizing Macroscopic Inhomogeneities in Perovskite Solar Cells

被引:31
作者
Dasgupta, Akash [1 ]
Mahesh, Suhas [1 ,3 ]
Caprioglio, Pietro [1 ]
Lin, Yen-Hung [1 ]
Zaininger, Karl-Augustin [1 ]
Oliver, Robert D. J. [1 ]
Holzhey, Philippe [1 ]
Zhou, Suer [1 ]
McCarthy, Melissa M. [1 ]
Smith, Joel A. [1 ]
Frenzel, Maximilian [1 ,2 ]
Christoforo, M. Greyson [1 ]
Ball, James M. [1 ]
Wenger, Bernard [1 ]
Snaith, Henry J. [1 ]
机构
[1] Univ Oxford, Dept Phys, Oxford OX1 3PU, England
[2] Fritz Haber Inst, Dept Phys Chem, D-14195 Berlin, Germany
[3] Univ Toronto, Edward S Rogers Sr Dept Elect & Comp Engn, Toronto, ON M5S 3G8, Canada
基金
英国工程与自然科学研究理事会;
关键词
EFFICIENCY; RECOMBINATION;
D O I
10.1021/acsenergylett.2c01094
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Despite the incredible progress made, the highest efficiency perovskite solar cells are still restricted to small areas (<1 cm(2)). In large part, this stems from a poor understanding of the widespread spatial heterogeneity in devices. Conventional techniques to assess heterogeneities can be time consuming, operate only at microscopic length scales, and demand specialized equipment. We overcome these limitations by using luminescence imaging to reveal large, millimeter-scale heterogeneities in the inferred electronic properties. We determine spatially resolved maps of "charge collection quality", measured using the ratio of photoluminescence intensity at open and short circuit. We apply these methods to quantify the inhomogeneities introduced by a wide range of transport layers, thereby ranking them by suitability for upscaling. We reveal that top-contacting transport layers are the dominant source of heterogeneity in the multilayer material stack. We suggest that this methodology can be used to accelerate the development of highly efficient, large-area modules, especially through high-throughput experimentation.
引用
收藏
页码:2311 / 2322
页数:12
相关论文
共 48 条
[1]  
ANDOR (Oxford instruments), ZYL SCMOS MAN SPEC S
[2]  
[Anonymous], BEST RES CELL EFFICI
[3]   Electrical properties of perovskite solar cells by illumination intensity and temperature-dependent photoluminescence imaging [J].
Bui, Anh Dinh ;
Mozaffari, Naeimeh ;
Truong, Thien N. ;
Duong, The ;
Weber, Klaus J. ;
White, Thomas P. ;
Catchpole, Kylie R. ;
Macdonald, Daniel ;
Nguyen, Hieu T. .
PROGRESS IN PHOTOVOLTAICS, 2022, 30 (08) :1038-1044
[4]   On the Origin of the Ideality Factor in Perovskite Solar Cells [J].
Caprioglio, Pietro ;
Wolff, Christian M. ;
Sandberg, Oskar J. ;
Armin, Ardalan ;
Rech, Bernd ;
Albrecht, Steve ;
Neher, Dieter ;
Stolterfoht, Martin .
ADVANCED ENERGY MATERIALS, 2020, 10 (27)
[5]   On the Relation between the Open-Circuit Voltage and Quasi-Fermi Level Splitting in Efficient Perovskite Solar Cells [J].
Caprioglio, Pietro ;
Stolterfoht, Martin ;
Wolff, Christian M. ;
Unold, Thomas ;
Rech, Bernd ;
Albrecht, Steve ;
Neher, Dieter .
ADVANCED ENERGY MATERIALS, 2019, 9 (33)
[6]   Interpreting Ideality Factors for Planar Perovskite Solar Cells: Ectypal Diode Theory for Steady-State Operation [J].
Courtier, N. E. .
PHYSICAL REVIEW APPLIED, 2020, 14 (02)
[7]  
Crameri F, 2021, SCI COLOUR MAPS
[8]  
Draguta S, 2018, ENERG ENVIRON SCI, V11, P960, DOI [10.1039/C7EE03654J, 10.1039/c7ee03654j]
[9]   Light-intensity and thickness dependent efficiency of planar perovskite solar cells: charge recombination versus extraction [J].
Du, Tian ;
Xu, Weidong ;
Xu, Shengda ;
Ratnasingham, Sinclair R. ;
Lin, Chieh-Ting ;
Kim, Jinhyun ;
Briscoe, Joe ;
McLachlan, Martyn A. ;
Durrant, James R. .
JOURNAL OF MATERIALS CHEMISTRY C, 2020, 8 (36) :12648-12655
[10]   Quantification of spatial inhomogeneity in perovskite solar cells by hyperspectral luminescence imaging [J].
El-Hajje, Gilbert ;
Momblona, Cristina ;
Gil-Escrig, Lidon ;
Avila, Jorge ;
Guillemot, Thomas ;
Guillemoles, Jean-Francois ;
Sessolo, Michele ;
Bolink, Henk J. ;
Lombez, Laurent .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (07) :2286-2294