Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study

被引:46
|
作者
Mahdavi, Reza [1 ]
Belgheisi, Ghazal [2 ]
Haghbin-Nazarpak, Masoumeh [3 ]
Omidi, Meisam [4 ]
Khojasteh, Arash [5 ]
Solati-Hashjin, Mehran [2 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Biomed Engn, Tehran, Iran
[2] Amirkabir Univ Technol, Biofabricat Lab, Dept Biomed Engn, Tehran Polytech, Tehran, Iran
[3] Amirkabir Univ Technol, New Technol Res Ctr NTRC, Tehran Polytech, Tehran, Iran
[4] Shahid Beheshti Univ, GC, Prot Res Ctr, Tehran, Iran
[5] Shahid Beheshti Univ Med Sci, Taleghani Univ Hosp, Sch Adv Technol Med, Dept Oral & Maxillofacial Surg, Tehran, Iran
关键词
GRAPHENE OXIDE; NANOCOMPOSITE SCAFFOLD; COMPOSITE SCAFFOLDS; CELLS; RESPONSES;
D O I
10.1007/s10856-020-06430-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Developing smart scaffolds with drug release capability is one of the main approaches to bone tissue engineering. The current study involves the fabrication of novel gelatin (G)-hydroxyapatite (HA)-/vitamin D (VD)-loaded graphene oxide (GO) scaffolds with different concentrations through solvent-casting method. Characterizations confirmed the successful synthesis of HA and GO, and VD was loaded in GO with 36.87 +/- 4.87% encapsulation efficiency. Physicochemical characterizations showed that the scaffold containing 1% VD-loaded GO had the best mechanical properties and its porosity percentage and density was in the range of natural spongy bone. All scaffolds were degraded after 1-month, subjecting to phosphate buffer saline. The release profile of VD did not match any mathematical kinetics model, porosities and the degradation rate of the scaffolds were dominant controlling factors of release behavior. Studies on the bioactivity of scaffolds immersed in simulated body fluid indicated that VD and HA could encourage the formation of secondary apatite crystals in vitro. Buccal fat pad-derived stem cells (BFPSCs) were seeded on the scaffolds, MTT assay, alkaline phosphatase activity as an indicator of osteoconductivity, and cell adhesion were conducted in order to evaluate in vitro biological responses. All scaffolds highly supported cell adhesion, MTT assay indicated better cell viability in 0.5% VD-loaded GO containing scaffold, and the scaffold enriched with 2% VD-loaded GO performed the most ALP activity. The results demonstrated the potential of these scaffolds to induce bone regeneration. Developing smart scaffolds with drug release capability is one of the main approaches to bone tissue engineering. The current study involves the fabrication of novel gelatin (G)-hydroxyapatite (HA)-/vitamin D (VD)-loaded graphene oxide (GO) scaffolds with different concentrations through solvent-casting method. Characterizations confirmed the successful synthesis of HA and GO, and VD was loaded in GO with 36.87 +/- 4.87% encapsulation efficiency. Physicochemical characterizations showed that the scaffold containing 1% VD-loaded GO had the best mechanical properties and its porosity percentage and density was in the range of natural spongy bone. All scaffolds were degraded after 1-month, subjecting to phosphate buffer saline. The release profile of VD did not match any mathematical kinetics model, porosities and the degradation rate of the scaffolds were dominant controlling factors of release behavior. Studies on the bioactivity of scaffolds immersed in simulated body fluid indicated that VD and HA could encourage the formation of secondary apatite crystals in vitro. Buccal fat pad-derived stem cells (BFPSCs) were seeded on the scaffolds, MTT assay, alkaline phosphatase activity as an indicator of osteoconductivity, and cell adhesion were conducted in order to evaluate in vitro biological responses. All scaffolds highly supported cell adhesion, MTT assay indicated better cell viability in 0.5% VD-loaded GO containing scaffold, and the scaffold enriched with 2% VD-loaded GO performed the most ALP activity. The results demonstrated the potential of these scaffolds to induce bone regeneration.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Synthesis, Characterization and in-vitro Study of Chitosan/Gelatin/Calcium Phosphate Hybrid Scaffolds Fabricated Via Ion Diffusion Mechanism for Bone Tissue Engineering
    Raz, Majid
    Moztarzadeh, Fathollah
    Kordestani, Soheila S.
    SILICON, 2018, 10 (02) : 277 - 286
  • [42] Multifunctional 3D-Printed Magnetic Polycaprolactone/Hydroxyapatite Scaffolds for Bone Tissue Engineering
    Petretta, Mauro
    Gambardella, Alessandro
    Desando, Giovanna
    Cavallo, Carola
    Bartolotti, Isabella
    Shelyakova, Tatiana
    Goranov, Vitaly
    Brucale, Marco
    Dediu, Valentin Alek
    Fini, Milena
    Grigolo, Brunella
    POLYMERS, 2021, 13 (21)
  • [43] Synthesis, characterization and biocompatible properties of novel silk fibroin/graphene oxide nanocomposite scaffolds for bone tissue engineering application
    Mehdi Narimani
    Abbas Teimouri
    Zeinab Shahbazarab
    Polymer Bulletin, 2019, 76 : 725 - 745
  • [44] Development of porous hydroxyapatite/PVA/gelatin/alginate hybrid flexible scaffolds with improved mechanical properties for bone tissue engineering
    El-Bahrawy, Nadia R.
    Elgharbawy, Hani
    Elmekawy, Ahmed
    Salem, Mohamed
    Morsy, Reda
    MATERIALS CHEMISTRY AND PHYSICS, 2024, 319
  • [45] 3D Graphene Oxide-Polyethylenimine Scaffolds for Cardiac Tissue Engineering
    Pilato, Serena
    Moffa, Samanta
    Siani, Gabriella
    Diomede, Francesca
    Trubiani, Oriana
    Pizzicannella, Jacopo
    Capista, Daniele
    Passacantando, Maurizio
    Samori, Paolo
    Fontana, Antonella
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (11) : 14077 - 14088
  • [46] 3D Graphene Oxide-Polyethylenimine Scaffolds for Cardiac Tissue Engineering
    Pilato, Serena
    Moffa, Samanta
    Siani, Gabriella
    Diomede, Francesca
    Trubiani, Oriana
    Pizzicannella, Jacopo
    Capista, Daniele
    Passacantando, Maurizio
    Samori, Paolo
    Fontana, Antonella
    ACS APPLIED MATERIALS & INTERFACES, 2023, : 14077 - 14088
  • [47] Synergistic effects of retinoic acid and graphene oxide on the physicochemical and in-vitro properties of electrospun polyurethane scaffolds for bone tissue engineering
    Safikhani, Mohammad Mahdi
    Zamanian, Ali
    Ghorbani, Farnaz
    E-POLYMERS, 2017, 17 (05): : 363 - 371
  • [48] Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering
    Bittner, Sean M.
    Smith, Brandon T.
    Diaz-Gomez, Luis
    Hudgins, Carrigan D.
    Melchiorri, Anthony J.
    Scott, David W.
    Fisher, John P.
    Mikos, Antonios G.
    ACTA BIOMATERIALIA, 2019, 90 : 37 - 48
  • [49] Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering
    Kavya, K. C.
    Jayakumar, R.
    Nair, Shantikumar
    Chennazhi, Krishna Prasad
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2013, 59 : 255 - 263
  • [50] Electrospun biodegradable scaffolds based on poly (ε-caprolactone)/gelatin containing titanium dioxide for bone tissue engineering application; in vitro study
    Mohammadi, Seyedeh Shima
    Shafiei, Seyedeh Sara
    JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY, 2023, 60 (04): : 270 - 281