Bone tissue engineering gelatin-hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study

被引:46
|
作者
Mahdavi, Reza [1 ]
Belgheisi, Ghazal [2 ]
Haghbin-Nazarpak, Masoumeh [3 ]
Omidi, Meisam [4 ]
Khojasteh, Arash [5 ]
Solati-Hashjin, Mehran [2 ]
机构
[1] Amirkabir Univ Technol, Tehran Polytech, Dept Biomed Engn, Tehran, Iran
[2] Amirkabir Univ Technol, Biofabricat Lab, Dept Biomed Engn, Tehran Polytech, Tehran, Iran
[3] Amirkabir Univ Technol, New Technol Res Ctr NTRC, Tehran Polytech, Tehran, Iran
[4] Shahid Beheshti Univ, GC, Prot Res Ctr, Tehran, Iran
[5] Shahid Beheshti Univ Med Sci, Taleghani Univ Hosp, Sch Adv Technol Med, Dept Oral & Maxillofacial Surg, Tehran, Iran
关键词
GRAPHENE OXIDE; NANOCOMPOSITE SCAFFOLD; COMPOSITE SCAFFOLDS; CELLS; RESPONSES;
D O I
10.1007/s10856-020-06430-5
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Developing smart scaffolds with drug release capability is one of the main approaches to bone tissue engineering. The current study involves the fabrication of novel gelatin (G)-hydroxyapatite (HA)-/vitamin D (VD)-loaded graphene oxide (GO) scaffolds with different concentrations through solvent-casting method. Characterizations confirmed the successful synthesis of HA and GO, and VD was loaded in GO with 36.87 +/- 4.87% encapsulation efficiency. Physicochemical characterizations showed that the scaffold containing 1% VD-loaded GO had the best mechanical properties and its porosity percentage and density was in the range of natural spongy bone. All scaffolds were degraded after 1-month, subjecting to phosphate buffer saline. The release profile of VD did not match any mathematical kinetics model, porosities and the degradation rate of the scaffolds were dominant controlling factors of release behavior. Studies on the bioactivity of scaffolds immersed in simulated body fluid indicated that VD and HA could encourage the formation of secondary apatite crystals in vitro. Buccal fat pad-derived stem cells (BFPSCs) were seeded on the scaffolds, MTT assay, alkaline phosphatase activity as an indicator of osteoconductivity, and cell adhesion were conducted in order to evaluate in vitro biological responses. All scaffolds highly supported cell adhesion, MTT assay indicated better cell viability in 0.5% VD-loaded GO containing scaffold, and the scaffold enriched with 2% VD-loaded GO performed the most ALP activity. The results demonstrated the potential of these scaffolds to induce bone regeneration. Developing smart scaffolds with drug release capability is one of the main approaches to bone tissue engineering. The current study involves the fabrication of novel gelatin (G)-hydroxyapatite (HA)-/vitamin D (VD)-loaded graphene oxide (GO) scaffolds with different concentrations through solvent-casting method. Characterizations confirmed the successful synthesis of HA and GO, and VD was loaded in GO with 36.87 +/- 4.87% encapsulation efficiency. Physicochemical characterizations showed that the scaffold containing 1% VD-loaded GO had the best mechanical properties and its porosity percentage and density was in the range of natural spongy bone. All scaffolds were degraded after 1-month, subjecting to phosphate buffer saline. The release profile of VD did not match any mathematical kinetics model, porosities and the degradation rate of the scaffolds were dominant controlling factors of release behavior. Studies on the bioactivity of scaffolds immersed in simulated body fluid indicated that VD and HA could encourage the formation of secondary apatite crystals in vitro. Buccal fat pad-derived stem cells (BFPSCs) were seeded on the scaffolds, MTT assay, alkaline phosphatase activity as an indicator of osteoconductivity, and cell adhesion were conducted in order to evaluate in vitro biological responses. All scaffolds highly supported cell adhesion, MTT assay indicated better cell viability in 0.5% VD-loaded GO containing scaffold, and the scaffold enriched with 2% VD-loaded GO performed the most ALP activity. The results demonstrated the potential of these scaffolds to induce bone regeneration.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Bone tissue engineering gelatin–hydroxyapatite/graphene oxide scaffolds with the ability to release vitamin D: fabrication, characterization, and in vitro study
    Reza Mahdavi
    Ghazal Belgheisi
    Masoumeh Haghbin-Nazarpak
    Meisam Omidi
    Arash Khojasteh
    Mehran Solati-Hashjin
    Journal of Materials Science: Materials in Medicine, 2020, 31
  • [2] Electrospun oriented gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering
    Salifu, Ali A.
    Lekakou, Constantina
    Labeed, Fatima H.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (07) : 1911 - 1926
  • [3] Multilayer cellular stacks of gelatin-hydroxyapatite fiber scaffolds for bone tissue engineering
    Salifu, A. A.
    Lekakou, C.
    Labeed, F.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2017, 105 (03) : 779 - 789
  • [4] Bone tissue engineering electrospun scaffolds based on layered double hydroxides with the ability to release vitamin D3: Fabrication, characterization and in vitro study
    Belgheisi, Ghazal
    Nazarpak, Masoumeh Haghbin
    Hashjin, Mehran Solati
    APPLIED CLAY SCIENCE, 2020, 185
  • [5] Stimulation of osteoblast responses to biomimetic nanocomposites of gelatin-hydroxyapatite for tissue engineering scaffolds
    Kim, HW
    Kim, HE
    Salih, V
    BIOMATERIALS, 2005, 26 (25) : 5221 - 5230
  • [6] Gelatin-hydroxyapatite Fibrous Nanocomposite for Regenerative Dentistry and bone Tissue Engineering
    Shahi, Shahriar
    Sharifi, Simin
    Khalilov, Rovshan
    Dizaj, Solmaz Maleki
    Abdolahinia, Elaheh Dalir
    OPEN DENTISTRY JOURNAL, 2022, 16
  • [7] 3D-printed hydroxyapatite/gelatin bone scaffolds reinforced with graphene oxide: Optimized fabrication and mechanical characterization
    Lee, Hoyeol
    Yoo, Jin Myoung
    Ponnusamy, Nandha Kumar
    Nam, Seung Yan
    CERAMICS INTERNATIONAL, 2022, 48 (07) : 10155 - 10163
  • [8] Fabrication and in vitro characterization of luffa-based composite scaffolds incorporated with gelatin, hydroxyapatite and psyllium husk for bone tissue engineering
    Gundu, Shravanya
    Sahi, Ajay Kumar
    Varshney, Neelima
    Varghese, Johny
    K. Vishwakarma, Niraj
    Mahto, Sanjeev Kumar
    JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION, 2022, 33 (17) : 2220 - 2248
  • [9] Novel layered double hydroxides-hydroxyapatite/gelatin bone tissue engineering scaffolds: Fabrication, characterization, and in vivo study
    Fayyazbakhsh, Fateme
    Solati-Hashjin, Mehran
    Keshtkar, Abbas
    Shokrgozar, Mohammad Ali
    Dehghan, Mohammad Mehdi
    Larijani, Bagher
    MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2017, 76 : 701 - 714
  • [10] Fabrication and characterization of PHEMA–gelatin scaffold enriched with graphene oxide for bone tissue engineering
    Sara Tabatabaee
    Nafiseh Baheiraei
    Mojdeh Salehnia
    Journal of Orthopaedic Surgery and Research, 17