Fully coupled Pauli-Fierz systems at zero and positive temperature

被引:7
作者
Moller, Jacob Schach [1 ]
机构
[1] Aarhus Univ, Dept Math, DK-8000 Aarhus C, Denmark
关键词
SPECTRAL THEORY; GROUND-STATES; EQUILIBRIUM STATES; NELSONS MODEL; GOLDEN-RULE; MASSLESS; COMMUTATORS; RETURN; ATOMS; EXISTENCE;
D O I
10.1063/1.4879239
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
These notes provide an introduction to the spectral analysis of Pauli-Fierz systems at zero and positive temperature. More precisely, we study finite dimensional quantum systems linearly coupled to a single reservoir, a massless scalar quantum field. We emphasize structure results valid at arbitrary system-reservoir coupling strength. The notes contain a mixture of known, refined, and new results and each section ends with a discussion of open problems. (C) 2014 AIP Publishing LLC.
引用
收藏
页数:67
相关论文
共 71 条
  • [21] Spectral theory of Pauli-Fierz operators
    Derezinski, J
    Jaksic, V
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2001, 180 (02) : 243 - 327
  • [22] THE EQUILIBRIUM STATES OF THE SPIN-BOSON MODEL
    FANNES, M
    NACHTERGAELE, B
    VERBEURE, A
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1988, 114 (04) : 537 - 548
  • [23] Second Order Perturbation Theory for Embedded Eigenvalues
    Faupin, J.
    Moller, J. S.
    Skibsted, E.
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2011, 306 (01) : 193 - 228
  • [24] Faupin J., COMMUN MATH IN PRESS
  • [25] Faupin J., ARXIV12074735V2
  • [26] Faupin J., J STAT PHYS IN PRESS
  • [27] REGULARITY OF BOUND STATES
    Faupin, Jeremy
    Moller, Jacob Schach
    Skibsted, Erik
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2011, 23 (05) : 453 - 530
  • [28] Another return of "return to equilibrium"
    Fröhlich, J
    Merkli, M
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 251 (02) : 235 - 262
  • [29] Ionization of atoms in a thermal field
    Fröhlich, J
    Merkli, M
    Sigal, IM
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2004, 116 (1-4) : 311 - 359
  • [30] Thermal ionization
    Fröhlich, J
    Merkli, M
    [J]. MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2004, 7 (03) : 239 - 287