Twin solutions to singular Dirichlet problems

被引:73
作者
Agarwal, RP
O'Regan, D
机构
[1] Natl Univ Singapore, Dept Math, Singapore 119260, Singapore
[2] Natl Univ Ireland Univ Coll Galway, Dept Math, Galway, Ireland
关键词
Dirichlet problem; fixed point theorems; multiple solutions; singular problems;
D O I
10.1006/jmaa.1999.6597
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The existence of two nonnegative solutions to Dirichlet second order boundary value problems is established in this paper. Our nonlinearity may be singular at y = 0, t = 0, and/or t = 1. (C) 1999 Academic Press.
引用
收藏
页码:433 / 445
页数:13
相关论文
共 9 条
[1]   Nonlinear superlinear singular and nonsingular second order boundary value problems [J].
Agarwal, RP ;
O'Regan, D .
JOURNAL OF DIFFERENTIAL EQUATIONS, 1998, 143 (01) :60-95
[2]  
AGARWAL RP, IN PRESS P AM MATH S
[3]  
Deimling K., 1985, NONLINEAR FUNCTIONAL, DOI DOI 10.1007/978-3-662-00547-7
[4]   SINGULAR NONLINEAR BOUNDARY-VALUE-PROBLEMS FOR HIGHER-ORDER ORDINARY DIFFERENTIAL-EQUATIONS [J].
ELOE, PW ;
HENDERSON, J .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1991, 17 (01) :1-10
[5]   Inequalities based on a generalization of concavity [J].
Eloe, PW ;
Henderson, J .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 125 (07) :2103-2107
[6]   MULTIPLE POSITIVE SOLUTIONS OF SOME BOUNDARY-VALUE-PROBLEMS [J].
ERBE, LH ;
HU, SC ;
WANG, HY .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1994, 184 (03) :640-648
[7]  
O'Regan D., 1995, DIFF EQUAT, V3, P289
[8]  
O'Regan D., 1997, Existence Theory for nonlinear ordinary differential equations
[9]  
ORegan D, 1997, DYN CONTIN DISCRET I, V3, P517