Global functional calculus for operators on compact Lie groups

被引:24
作者
Ruzhansky, Michael [1 ]
Wirth, Jens [2 ,3 ]
机构
[1] Univ London Imperial Coll Sci Technol & Med, Dept Math, London SW7 2AZ, England
[2] Univ Munich, Math Inst, D-80333 Munich, Germany
[3] Univ Stuttgart, Inst Anal Dynam & Modellierung, D-70569 Stuttgart, Germany
基金
英国工程与自然科学研究理事会;
关键词
Functional calculus; Pseudo-differential operators; Compact Lie groups; Garding inequality; COMPLEX POWERS; DIFFERENTIAL-OPERATORS; MANIFOLDS;
D O I
10.1016/j.jfa.2014.04.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we develop the functional calculus for elliptic operators on compact Lie groups without the assumption that the operator is a classical pseudo-differential operator. Consequently, we provide a symbolic descriptions of complex powers of such operators. As an application, we give a constructive symbolic proof of the Carding inequality for operators in (rho, delta)-classes in the setting of compact Lie groups. (C) 2014 Elsevier Inc. All rights reserved.
引用
收藏
页码:144 / 172
页数:29
相关论文
共 25 条
[1]  
[Anonymous], 1984, ASTERISQUE
[2]  
[Anonymous], 2010, BACKGROUND ANAL ADV
[3]   CHARACTERIZATION OF PSEUDODIFFERENTIAL OPERATORS AND APPLICATIONS [J].
BEALS, R .
DUKE MATHEMATICAL JOURNAL, 1977, 44 (01) :45-57
[4]   UNITARY REPRESENTATIONS OF LIE-GROUPS AND GARDINGS INEQUALITY [J].
BRATTELI, O ;
GOODMAN, FM ;
JORGENSEN, PET ;
ROBINSON, DW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1989, 107 (03) :627-632
[5]   Complex powers of hypoelliptic pseudodifferential operators [J].
Buzano, Ernesto ;
Nicola, Fabio .
JOURNAL OF FUNCTIONAL ANALYSIS, 2007, 245 (02) :353-378
[6]   Bounded imaginary powers of differential operators on manifolds with conical singularities [J].
Coriasco, S ;
Schrohe, E ;
Seiler, J .
MATHEMATISCHE ZEITSCHRIFT, 2003, 244 (02) :235-269
[7]  
Dasgupta A., 2014, B SCI MATH
[8]  
Dasgupta A., 2014, J ANAL MATH IN PRESS
[9]  
Delgado J., 2013, J MATH PURES APPL
[10]  
Kumano-go H., 1973, OSAKA J MATH, V10, P147