Adaptive Synchronization for a Class of Uncertain Fractional-Order Neural Networks

被引:56
作者
Liu, Heng [1 ,2 ]
Li, Shenggang [1 ]
Wang, Hongxing [2 ]
Huo, Yuhong [2 ]
Luo, Junhai [3 ]
机构
[1] Shaanxi Normal Univ, Coll Math & Informat Sci, Xian 710119, Peoples R China
[2] Huainan Normal Univ, Dept Appl Math, Huainan 232038, Peoples R China
[3] Univ Elect Sci & Technol China, Sch Elect Engn, Chengdu 611731, Peoples R China
基金
中国国家自然科学基金;
关键词
fractional-order neural network; adaptive control; synchronization; FINITE-TIME STABILITY; LYAPUNOV FUNCTIONS; PARAMETERS; CHAOS;
D O I
10.3390/e17107185
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, synchronization for a class of uncertain fractional-order neural networks subject to external disturbances and disturbed system parameters is studied. Based on the fractional-order extension of the Lyapunov stability criterion, an adaptive synchronization controller is designed, and fractional-order adaptation law is proposed to update the controller parameter online. The proposed controller can guarantee that the synchronization errors between two uncertain fractional-order neural networks converge to zero asymptotically. By using some proposed lemmas, the quadratic Lyapunov functions are employed in the stability analysis. Finally, numerical simulations are presented to confirm the effectiveness of the proposed method.
引用
收藏
页码:7185 / 7200
页数:16
相关论文
共 29 条
[1]   Lyapunov functions for fractional order systems [J].
Aguila-Camacho, Norelys ;
Duarte-Mermoud, Manuel A. ;
Gallegos, Javier A. .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2014, 19 (09) :2951-2957
[2]   Chaotic behavior in noninteger-order cellular neural networks [J].
Arena, P ;
Fortuna, L ;
Porto, D .
PHYSICAL REVIEW E, 2000, 61 (01) :776-781
[3]   Bifurcation and chaos in noninteger order cellular neural networks [J].
Arena, P ;
Caponetto, R ;
Fortuna, L ;
Porto, D .
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 1998, 8 (07) :1527-1539
[4]   Projective synchronization of fractional-order memristor-based neural networks [J].
Bao, Hai-Bo ;
Cao, Jin-De .
NEURAL NETWORKS, 2015, 63 :1-9
[5]  
Boroomand A, 2009, LECT NOTES COMPUT SC, V5506, P883, DOI 10.1007/978-3-642-02490-0_108
[6]   Global Mittag-Leffler stability and synchronization of memristor-based fractional-order neural networks [J].
Chen, Jiejie ;
Zeng, Zhigang ;
Jiang, Ping .
NEURAL NETWORKS, 2014, 51 :1-8
[7]   Synchronization of a Class of Fractional-Order Chaotic Neural Networks [J].
Chen, Liping ;
Qu, Jianfeng ;
Chai, Yi ;
Wu, Ranchao ;
Qi, Guoyuan .
ENTROPY, 2013, 15 (08) :3265-3276
[8]   Fractional-Order Dynamic Output Feedback Sliding Mode Control Design for Robust Stabilization of Uncertain Fractional-Order Nonlinear Systems [J].
Dadras, Sara ;
Momeni, Hamid Reza .
ASIAN JOURNAL OF CONTROL, 2014, 16 (02) :489-497
[9]   Stability analysis of Caputo fractional-order nonlinear systems revisited [J].
Delavari, Hadi ;
Baleanu, Dumitru ;
Sadati, Jalil .
NONLINEAR DYNAMICS, 2012, 67 (04) :2433-2439
[10]   Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems [J].
Duarte-Mermoud, Manuel A. ;
Aguila-Camacho, Norelys ;
Gallegos, Javier A. ;
Castro-Linares, Rafael .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2015, 22 (1-3) :650-659