DAWN: a framework to identify autism genes and subnetworks using gene expression and genetics

被引:104
作者
Liu, Li [1 ]
Lei, Jing [1 ]
Sanders, Stephan J. [2 ,3 ]
Willsey, Arthur Jeremy [2 ,3 ]
Kou, Yan [4 ,5 ,6 ]
Cicek, Abdullah Ercument [7 ]
Klei, Lambertus [8 ]
Lu, Cong [1 ]
He, Xin [7 ]
Li, Mingfeng [9 ,10 ]
Muhle, Rebecca A. [3 ,9 ,11 ]
Ma'ayan, Avi [5 ,6 ]
Noonan, James P. [3 ,9 ]
Sestan, Nenad [9 ,10 ]
McFadden, Kathryn A. [12 ]
State, Matthew W. [2 ,3 ,10 ,13 ,14 ]
Buxbaum, Joseph D. [4 ,15 ,16 ,17 ,18 ]
Devlin, Bernie [8 ]
Roeder, Kathryn [1 ,7 ]
机构
[1] Carnegie Mellon Univ, Dept Stat, Pittsburgh, PA 15213 USA
[2] Univ Calif San Francisco, Dept Psychiat, San Francisco, CA USA
[3] Yale Univ, Sch Med, Dept Genet, New Haven, CT 06510 USA
[4] Icahn Sch Med Mt Sinai, Seaver Autism Ctr Res & Treatment, New York, NY USA
[5] Icahn Sch Med Mt Sinai, Dept Pharmacol, New York, NY USA
[6] Icahn Sch Med Mt Sinai, Syst Therapeut & Syst Biol Ctr New York, New York, NY USA
[7] Carnegie Mellon Univ, Ray & Stephanie Lane Ctr Computat Biol, Pittsburgh, PA 15213 USA
[8] Univ Pittsburgh, Sch Med, Dept Psychiat, Pittsburgh, PA USA
[9] Yale Univ, Sch Med, Kavli Inst Neurosci, New Haven, CT USA
[10] Yale Univ, Sch Med, Dept Neurobiol, New Haven, CT USA
[11] Yale Univ, Sch Med, Ctr Child Study, New Haven, CT 06510 USA
[12] Univ Pittsburgh, Sch Med, Dept Pathol, Pittsburgh, PA USA
[13] Yale Univ, Sch Med, Program Neurogenet, New Haven, CT USA
[14] Yale Univ, Sch Med, Dept Psychiat, New Haven, CT USA
[15] Icahn Sch Med Mt Sinai, Friedman Brain Inst, Dept Psychiat, New York, NY USA
[16] Icahn Sch Med Mt Sinai, Friedman Brain Inst, Dept Neurosci, New York, NY USA
[17] Icahn Sch Med Mt Sinai, Friedman Brain Inst, Dept Genet & Genom Sci, New York, NY USA
[18] Icahn Sch Med Mt Sinai, Friedman Brain Inst, Mindisch Child Hlth & Dev Inst, New York, NY USA
关键词
Autism; Risk prediction; Gene discovery; Weighted gene co-expression network analysis; Network; Hidden Markov random field; Neurite extension; Neuronal arborization; DE-NOVO MUTATIONS; LARGE-SCALE; PROTEIN; ABNORMALITIES; DISORDERS; SPASTIN; RISK;
D O I
10.1186/2040-2392-5-22
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: De novo loss-of-function (dnLoF) mutations are found twofold more often in autism spectrum disorder (ASD) probands than their unaffected siblings. Multiple independent dnLoF mutations in the same gene implicate the gene in risk and hence provide a systematic, albeit arduous, path forward for ASD genetics. It is likely that using additional non-genetic data will enhance the ability to identify ASD genes. Methods: To accelerate the search for ASD genes, we developed a novel algorithm, DAWN, to model two kinds of data: rare variations from exome sequencing and gene co-expression in the mid-fetal prefrontal and motor-somatosensory neocortex, a critical nexus for risk. The algorithm casts the ensemble data as a hidden Markov random field in which the graph structure is determined by gene co-expression and it combines these interrelationships with node-specific observations, namely gene identity, expression, genetic data and the estimated effect on risk. Results: Using currently available genetic data and a specific developmental time period for gene co-expression, DAWN identified 127 genes that plausibly affect risk, and a set of likely ASD subnetworks. Validation experiments making use of published targeted resequencing results demonstrate its efficacy in reliably predicting ASD genes. DAWN also successfully predicts known ASD genes, not included in the genetic data used to create the model. Conclusions: Validation studies demonstrate that DAWN is effective in predicting ASD genes and subnetworks by leveraging genetic and gene expression data. The findings reported here implicate neurite extension and neuronal arborization as risks for ASD. Using DAWN on emerging ASD sequence data and gene expression data from other brain regions and tissues would likely identify novel ASD genes. DAWN can also be used for other complex disorders to identify genes and subnetworks in those disorders.
引用
收藏
页数:18
相关论文
共 75 条
[1]   A method and server for predicting damaging missense mutations [J].
Adzhubei, Ivan A. ;
Schmidt, Steffen ;
Peshkin, Leonid ;
Ramensky, Vasily E. ;
Gerasimova, Anna ;
Bork, Peer ;
Kondrashov, Alexey S. ;
Sunyaev, Shamil R. .
NATURE METHODS, 2010, 7 (04) :248-249
[2]   Individual common variants exert weak effects on the risk for autism spectrum disorderspi [J].
Anney, Richard ;
Klei, Lambertus ;
Pinto, Dalila ;
Almeida, Joana ;
Bacchelli, Elena ;
Baird, Gillian ;
Bolshakova, Nadia ;
Boelte, Sven ;
Bolton, Patrick F. ;
Bourgeron, Thomas ;
Brennan, Sean ;
Brian, Jessica ;
Casey, Jillian ;
Conroy, Judith ;
Correia, Catarina ;
Corsello, Christina ;
Crawford, Emily L. ;
de Jonge, Maretha ;
Delorme, Richard ;
Duketis, Eftichia ;
Duque, Frederico ;
Estes, Annette ;
Farrar, Penny ;
Fernandez, Bridget A. ;
Folstein, Susan E. ;
Fombonne, Eric ;
Gilbert, John ;
Gillberg, Christopher ;
Glessner, Joseph T. ;
Green, Andrew ;
Green, Jonathan ;
Guter, Stephen J. ;
Heron, Elizabeth A. ;
Holt, Richard ;
Howe, Jennifer L. ;
Hughes, Gillian ;
Hus, Vanessa ;
Igliozzi, Roberta ;
Jacob, Suma ;
Kenny, Graham P. ;
Kim, Cecilia ;
Kolevzon, Alexander ;
Kustanovich, Vlad ;
Lajonchere, Clara M. ;
Lamb, Janine A. ;
Law-Smith, Miriam ;
Leboyer, Marion ;
Le Couteur, Ann ;
Leventhal, Bennett L. ;
Liu, Xiao-Qing .
HUMAN MOLECULAR GENETICS, 2012, 21 (21) :4781-4792
[3]   Gene Ontology: tool for the unification of biology [J].
Ashburner, M ;
Ball, CA ;
Blake, JA ;
Botstein, D ;
Butler, H ;
Cherry, JM ;
Davis, AP ;
Dolinski, K ;
Dwight, SS ;
Eppig, JT ;
Harris, MA ;
Hill, DP ;
Issel-Tarver, L ;
Kasarskis, A ;
Lewis, S ;
Matese, JC ;
Richardson, JE ;
Ringwald, M ;
Rubin, GM ;
Sherlock, G .
NATURE GENETICS, 2000, 25 (01) :25-29
[4]   The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders [J].
Bacon, Claire ;
Rappold, Gudrun A. .
HUMAN GENETICS, 2012, 131 (11) :1687-1698
[5]   Combined analysis of exome sequencing points toward a major role for transcription regulation during brain development in autism [J].
Ben-David, E. ;
Shifman, S. .
MOLECULAR PSYCHIATRY, 2013, 18 (10) :1054-1056
[6]   CONTROLLING THE FALSE DISCOVERY RATE - A PRACTICAL AND POWERFUL APPROACH TO MULTIPLE TESTING [J].
BENJAMINI, Y ;
HOCHBERG, Y .
JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES B-STATISTICAL METHODOLOGY, 1995, 57 (01) :289-300
[7]   Genes2Networks: connecting lists of gene symbols using mammalian protein interactions databases [J].
Berger, Seth I. ;
Posner, Jeremy M. ;
Ma'ayan, Avi .
BMC BIOINFORMATICS, 2007, 8 (1)
[8]   Etiological heterogeneity in autism spectrum disorders: More than 100 genetic and genomic disorders and still counting [J].
Betancur, Catalina .
BRAIN RESEARCH, 2011, 1380 :42-77
[9]   The Mouse Genome Database genotypes::phenotypes [J].
Blake, Judith A. ;
Bult, Carol J. ;
Eppig, Janan T. ;
Kadin, James A. ;
Richardson, Joel E. .
NUCLEIC ACIDS RESEARCH, 2009, 37 :D712-D719
[10]   A synaptic trek to autism [J].
Bourgeron, Thomas .
CURRENT OPINION IN NEUROBIOLOGY, 2009, 19 (02) :231-234