Spin structures on flat manifolds

被引:9
作者
Dekimpe, K.
Sadowski, M.
Szczepanski, A.
机构
[1] Katholieke Univ Leuven, B-8500 Kortrijk, Belgium
[2] Univ Gdansk, Inst Math, PL-80952 Gdansk, Poland
来源
MONATSHEFTE FUR MATHEMATIK | 2006年 / 148卷 / 04期
关键词
spin structure; flat manifold;
D O I
10.1007/s00605-005-0367-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to present some results about spin structures on flat manifolds. We prove that any finite group can be the holonomy group of a flat spin manifold. Moreover, we shall give some methods of constructing spin structures related to the holonomy representation.
引用
收藏
页码:283 / 296
页数:14
相关论文
共 21 条
[1]  
Brown H., 1978, Crystallographic groups of four-dimensional space
[2]  
Brown K. S., 1982, COHOMOLOGY GROUPS
[3]  
CHARLAP LS, 1986, BIBERBACH GROUPS FLA
[4]  
DORNHOFF L, 1971, GROUP REPRESENTATI B
[5]   RATIONAL REPRESENTATIONS OF FINITE-GROUPS AND THEIR EULER CLASS [J].
ECKMANN, B ;
MISLIN, G .
MATHEMATISCHE ANNALEN, 1979, 245 (01) :45-54
[6]  
FRIEDRICH T, 2000, AM MATH SOC
[7]   REAL CHARACTERS, DOUBLE COVERS, AND THE MULTIPLIER .2. [J].
GAGOLA, SM ;
GARRISON, SC .
JOURNAL OF ALGEBRA, 1986, 98 (01) :38-75
[8]  
GRIESS RL, 1970, NOT AM MATH SOC, V17, P644
[9]   HOLONOMY OF FLAT MANIFOLDS WITH B1=0 [J].
HILLER, H ;
SAH, CH .
QUARTERLY JOURNAL OF MATHEMATICS, 1986, 37 (146) :177-187
[10]   HOLONOMY OF FLAT MANIFOLDS WITH B1 = 0 .2. [J].
HILLER, H ;
MARCINIAK, Z ;
SAH, CH ;
SZCZEPANSKI, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1987, 38 (150) :213-220