Reconstructing the potential for the one-dimensional Schrodinger equation from boundary measurements

被引:10
作者
Avdonin, Sergei A. [1 ,2 ]
Mikhaylov, Victor S. [3 ,4 ]
机构
[1] Univ Tennessee, Dept Math, Chattanooga, TN 37403 USA
[2] Univ Alaska, Dept Math & Stat, Fairbanks, AK 99775 USA
[3] Russian Acad Sci, St Petersburg Dept, VA Steklov Inst Math, St Petersburg 191023, Russia
[4] St Petersburg State Univ, Chebyshev Lab, St Petersburg 199178, Russia
关键词
Schrodinger equation; inverse problem; boundary control method; INVERSE PROBLEMS;
D O I
10.1093/imamci/dnt009
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We consider the inverse problem of determining the potential in the dynamical Schrodinger equation on the interval by the measurement on the boundary. We use the boundary control method to recover the spectrum of the problem from the observation at either left or right endpoints. Using the specificity of the one-dimensional situation, we recover the spectral function, reducing the problem to the classical one which could be treated by known methods. We apply the algorithm to the situation when only a finite number of eigenvalues are known and prove the convergence of the method.
引用
收藏
页码:137 / 150
页数:14
相关论文
共 19 条
[1]  
Avdonin S., 2005, Journal of Inverse and ILL-Posed Problems, V13, P317, DOI 10.1163/156939405775201718
[2]   BOUNDARY CONTROL AND A MATRIX INVERSE PROBLEM FOR THE EQUATION U(TT)-U(XX)+V(X)U=O [J].
AVDONIN, SA ;
BELISHEV, MI ;
IVANOV, SA .
MATHEMATICS OF THE USSR-SBORNIK, 1992, 72 (02) :287-310
[3]   SPECTRAL ESTIMATION AND INVERSE INITIAL BOUNDARY VALUE PROBLEMS [J].
Avdonin, Sergei ;
Gesztesy, Fritz ;
Makarov, Konstantin A. .
INVERSE PROBLEMS AND IMAGING, 2010, 4 (01) :1-9
[4]   The boundary control approach to inverse spectral theory [J].
Avdonin, Sergei ;
Mikhaylov, Victor .
INVERSE PROBLEMS, 2010, 26 (04)
[5]   Uniqueness and stability in an inverse problem for the Schrodinger equation (vol 18, pg 1537, 2002) [J].
Baudouin, L. ;
Puel, J-P .
INVERSE PROBLEMS, 2007, 23 (03) :1327-1328
[6]   Uniqueness and stability in an inverse problem for the Schrodinger equation [J].
Baudouin, L ;
Puel, JP .
INVERSE PROBLEMS, 2002, 18 (06) :1537-1554
[7]   Recent progress in the boundary control method [J].
Belishev, M. I. .
INVERSE PROBLEMS, 2007, 23 (05) :R1-R67
[8]  
Belishev M.I., 2002, Journal of Mathematical Sciences, V109, P1814
[9]   Logarithmic stability in the dynamical inverse problem for the Schrodinger equation by arbitrary boundary observation [J].
Bellassoued, Mourad ;
Choulli, Mourad .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2009, 91 (03) :233-255
[10]   INVERSE PROBLEMS FOR MULTIDIMENSIONAL HEAT EQUATIONS BY MEASUREMENTS AT A SINGLE POINT ON THE BOUNDARY [J].
Boumenir, A. ;
Tuan, V. K. .
NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2009, 30 (11-12) :1215-1230