Estimates for n-widths of the Hardy-type operators (Addendum to "Improved estimates for the approximation numbers of the Hardy-type operators")

被引:6
作者
Lang, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
approximation; Kolmogorov; Geffand and Bernstein numbers; weighted hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/j.jat.2005.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hardy-type operator T: L-p (a, b) --> L-p (a, b), -infinity <= a< b <= infinity, which is defined by (Tf)(x) = v(x) integral(x)(a) u(t) f (t) dt. It is shown that rho(n) (T) = 1/n alpha(p) integral(b)(a) u(x)v(x) + O(n(-2)), where rho(n) (T) stands for any of the following: the Kolmogorov n-width, the Gel'fand n-width, the Bernstein n-width or the nth approximation number of T. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 2 条
[1]   Improved estimates for the approximation numbers of Hardy-type operators [J].
Lang, J .
JOURNAL OF APPROXIMATION THEORY, 2003, 121 (01) :61-70
[2]  
Pinkus A., 1985, N WIDTHS APPROXIMATI