Estimates for n-widths of the Hardy-type operators (Addendum to "Improved estimates for the approximation numbers of the Hardy-type operators")

被引:6
|
作者
Lang, J [1 ]
机构
[1] Ohio State Univ, Dept Math, Columbus, OH 43210 USA
关键词
approximation; Kolmogorov; Geffand and Bernstein numbers; weighted hardy-type operators; integral operators; weighted spaces;
D O I
10.1016/j.jat.2005.11.018
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Consider the Hardy-type operator T: L-p (a, b) --> L-p (a, b), -infinity <= a< b <= infinity, which is defined by (Tf)(x) = v(x) integral(x)(a) u(t) f (t) dt. It is shown that rho(n) (T) = 1/n alpha(p) integral(b)(a) u(x)v(x) + O(n(-2)), where rho(n) (T) stands for any of the following: the Kolmogorov n-width, the Gel'fand n-width, the Bernstein n-width or the nth approximation number of T. (C) 2006 Elsevier Inc. All rights reserved.
引用
收藏
页码:141 / 146
页数:6
相关论文
共 39 条
  • [1] Improved estimates for the approximation numbers of Hardy-type operators
    Lang, J
    JOURNAL OF APPROXIMATION THEORY, 2003, 121 (01) : 61 - 70
  • [2] Bernstein widths of Hardy-type operators in a non-homogeneous case
    Edmunds, D. E.
    Lang, J.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 325 (02) : 1060 - 1076
  • [3] General Hardy-type operators on local generalized Morrey spaces
    Yee, Tat-leung
    Ho, Kwok-pun
    CONSTRUCTIVE MATHEMATICAL ANALYSIS, 2025, 8 (01): : 1 - 14
  • [4] HARDY-TYPE OPERATORS IN LORENTZ-TYPE SPACES DEFINED ON MEASURE SPACES
    Sun, Qinxiu
    Yu, Xiao
    Li, Hongliang
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (03) : 1105 - 1132
  • [5] Boundedness of Hardy-type operators with a kernel: integral weighted conditions for the case
    Krepela, Martin
    REVISTA MATEMATICA COMPLUTENSE, 2017, 30 (03): : 547 - 587
  • [6] WEIGHTED ITERATED HARDY-TYPE INEQUALITIES
    Gogatishvili, Amiran
    Mustafayev, Rza Ch.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (03): : 683 - 728
  • [7] Estimates for n-widths of multiplier operators of multiple Walsh series
    Cordoba, Sergio A. P.
    Tozoni, Sergio A.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2019, 479 (01) : 1292 - 1323
  • [8] HARDY-TYPE INEQUALITIES ON THE CONES OF MONOTONE FUNCTIONS
    Popova, O. V.
    SIBERIAN MATHEMATICAL JOURNAL, 2012, 53 (01) : 152 - 167
  • [9] ITERATED HARDY-TYPE INEQUALITIES INVOLVING SUPREMA
    Gogatishvili, Amiran
    Mustafayev, Rza Ch.
    MATHEMATICAL INEQUALITIES & APPLICATIONS, 2017, 20 (04): : 901 - 927
  • [10] Operators of Hardy type
    Edmunds, D. E.
    Lang, J.
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2007, 208 (01) : 20 - 28